Open Access iconOpen Access

ARTICLE

crossmark

Traffic Flow Statistics Method Based on Deep Learning and Multi-Feature Fusion

Liang Mu, Hong Zhao*, Yan Li, Xiaotong Liu, Junzheng Qiu, Chuanlong Sun

College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China

* Corresponding Author: Hong Zhao. Email: email

(This article belongs to the Special Issue: Modeling and Analysis of Autonomous Intelligence)

Computer Modeling in Engineering & Sciences 2021, 129(2), 465-483. https://doi.org/10.32604/cmes.2021.017276

Abstract

Traffic flow statistics have become a particularly important part of intelligent transportation. To solve the problems of low real-time robustness and accuracy in traffic flow statistics. In the DeepSort tracking algorithm, the Kalman filter (KF), which is only suitable for linear problems, is replaced by the extended Kalman filter (EKF), which can effectively solve nonlinear problems and integrate the Histogram of Oriented Gradient (HOG) of the target. The multi-target tracking framework was constructed with YOLO V5 target detection algorithm. An efficient and long-running Traffic Flow Statistical framework (TFSF) is established based on the tracking framework. Virtual lines are set up to record the movement direction of vehicles to more accurate and detailed statistics of traffic flow. In order to verify the robustness and accuracy of the traffic flow statistical framework, the traffic flow in different scenes of actual road conditions was collected for verification. The experimental validation shows that the accuracy of the traffic statistics framework reaches more than 93%, and the running speed under the detection data set in this paper is 32.7FPS, which can meet the real-time requirements and has a particular significance for the development of intelligent transportation.

Keywords


Cite This Article

APA Style
Mu, L., Zhao, H., Li, Y., Liu, X., Qiu, J. et al. (2021). Traffic flow statistics method based on deep learning and multi-feature fusion. Computer Modeling in Engineering & Sciences, 129(2), 465-483. https://doi.org/10.32604/cmes.2021.017276
Vancouver Style
Mu L, Zhao H, Li Y, Liu X, Qiu J, Sun C. Traffic flow statistics method based on deep learning and multi-feature fusion. Comput Model Eng Sci. 2021;129(2):465-483 https://doi.org/10.32604/cmes.2021.017276
IEEE Style
L. Mu, H. Zhao, Y. Li, X. Liu, J. Qiu, and C. Sun "Traffic Flow Statistics Method Based on Deep Learning and Multi-Feature Fusion," Comput. Model. Eng. Sci., vol. 129, no. 2, pp. 465-483. 2021. https://doi.org/10.32604/cmes.2021.017276

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2589

    View

  • 1773

    Download

  • 0

    Like

Share Link