Open Access iconOpen Access

REVIEW

crossmark

In vitro engineered models of neurodegenerative diseases

ZEHRA GÜL MORÇIMEN1, ŞEYMA TAŞDEMIR2, AYLIN ŞENDEMIR3,4,*

1 Bioengineering Department, Graduate School of Natural and Applied Sciences, Ege University, Izmir, 35040, Türkiye
2 Bioengineering Department, Faculty of Engineering and Natural Science, Celal Bayar University, Manisa, 45110, Türkiye
3 Bioengineering Department, Ege University, Izmir, 35040, Türkiye
4 Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, Izmir, 35040, Türkiye

* Corresponding Author: AYLIN ŞENDEMIR. Email: email

BIOCELL 2024, 48(1), 79-96. https://doi.org/10.32604/biocell.2023.045361

Abstract

Neurodegeneration is a catastrophic process that develops progressive damage leading to functional and structural loss of the cells of the nervous system and is among the biggest unavoidable problems of our age. Animal models do not reflect the pathophysiology observed in humans due to distinct differences between the neural pathways, gene expression patterns, neuronal plasticity, and other disease-related mechanisms in animals and humans. Classical in vitro cell culture models are also not sufficient for pre-clinical drug testing in reflecting the complex pathophysiology of neurodegenerative diseases. Today, modern, engineered techniques are applied to develop multicellular, intricate in vitro models and to create the closest microenvironment simulating biological, biochemical, and mechanical characteristics of the in vivo degenerating tissue. In THIS review, the capabilities and shortcomings of scaffold-based and scaffold-free techniques, organoids, and microfluidic models that best reflect neurodegeneration in vitro in the biomimetic framework are discussed.

Keywords


Cite This Article

MORÇIMEN, Z. G., TAŞDEMIR,



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 286

    View

  • 100

    Download

  • 0

    Like

Share Link