Open Access iconOpen Access



Optimized Hybrid Block Adams Method for Solving First Order Ordinary Differential Equations

Hira Soomro1,*, Nooraini Zainuddin1, Hanita Daud1, Joshua Sunday2

1 Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
2 Department of Mathematics, University of Jos, 930003, Jos, Nigeria

* Corresponding Author: Hira Soomro. Email: email

Computers, Materials & Continua 2022, 72(2), 2947-2961.


Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost. The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency. Hybrid block methods for instance are specifically used in numerical integration of initial value problems. In this paper, an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations (ODEs). In deriving the method, the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval. Furthermore, the convergence properties along with the region of stability of the method were examined. It was concluded that the newly derived method is convergent, consistent, and zero-stable. The method was also found to be A-stable implying that it covers the whole of the left/negative half plane. From the numerical computations of absolute errors carried out using the newly derived method, it was found that the method performed better than the ones with which we compared our results with. The method also showed its superiority over the existing methods in terms of stability and convergence.


Cite This Article

H. Soomro, N. Zainuddin, H. Daud and J. Sunday, "Optimized hybrid block adams method for solving first order ordinary differential equations," Computers, Materials & Continua, vol. 72, no.2, pp. 2947–2961, 2022.

cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1212


  • 609


  • 0


Share Link