Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,020)
  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    A CNN-Transformer Hybrid Model for Real-Time Recognition of Affective Tactile Biosignals

    Chang Xu1,*, Xianbo Yin2, Zhiyong Zhou1, Bomin Liu1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.074417 - 10 February 2026

    Abstract This study presents a hybrid CNN-Transformer model for real-time recognition of affective tactile biosignals. The proposed framework combines convolutional neural networks (CNNs) to extract spatial and local temporal features with the Transformer encoder that captures long-range dependencies in time-series data through multi-head attention. Model performance was evaluated on two widely used tactile biosignal datasets, HAART and CoST, which contain diverse affective touch gestures recorded from pressure sensor arrays. The CNN-Transformer model achieved recognition rates of 93.33% on HAART and 80.89% on CoST, outperforming existing methods on both benchmarks. By incorporating temporal windowing, the model enables More >

  • Open Access

    ARTICLE

    A Hybrid Clique-Based Method with Structural Feature Node Extraction for Community Detection in Overlapping Networks

    Sicheng Ma1, Lixiang Zhang2,*, Guocai Chen3, Zeyu Dai3, Junru Zhu4, Wei Fang1,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073572 - 10 February 2026

    Abstract Community detection is a fundamental problem in network analysis for identifying densely connected node clusters, with successful applications in diverse fields like social networks, recommendation systems, biology, and cyberattack detection. Overlapping community detection refers to the case of a node belonging to multiple communities simultaneously, which is a much more meaningful and challenging task. Graph representation learning with Evolutionary Computation has been studied well in overlapping community detection to deal with complex network structures and characteristics. However, most of them focus on searching the entire solution space, which can be inefficient and lead to inadequate… More >

  • Open Access

    ARTICLE

    A Hybrid Vision Transformer with Attention Architecture for Efficient Lung Cancer Diagnosis

    Abdu Salam1, Fahd M. Aldosari2, Donia Y. Badawood3, Farhan Amin4,*, Isabel de la Torre5,*, Gerardo Mendez Mezquita6, Henry Fabian Gongora6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073342 - 10 February 2026

    Abstract Lung cancer remains a major global health challenge, with early diagnosis crucial for improved patient survival. Traditional diagnostic techniques, including manual histopathology and radiological assessments, are prone to errors and variability. Deep learning methods, particularly Vision Transformers (ViT), have shown promise for improving diagnostic accuracy by effectively extracting global features. However, ViT-based approaches face challenges related to computational complexity and limited generalizability. This research proposes the DualSet ViT-PSO-SVM framework, integrating a ViT with dual attention mechanisms, Particle Swarm Optimization (PSO), and Support Vector Machines (SVM), aiming for efficient and robust lung cancer classification across multiple… More >

  • Open Access

    ARTICLE

    Engine Failure Prediction on Large-Scale CMAPSS Data Using Hybrid Feature Selection and Imbalance-Aware Learning

    Ahmad Junaid1, Abid Iqbal2,*, Abuzar Khan1, Ghassan Husnain1,*, Abdul-Rahim Ahmad3, Mohammed Al-Naeem4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073189 - 10 February 2026

    Abstract Most predictive maintenance studies have emphasized accuracy but provide very little focus on Interpretability or deployment readiness. This study improves on prior methods by developing a small yet robust system that can predict when turbofan engines will fail. It uses the NASA CMAPSS dataset, which has over 200,000 engine cycles from 260 engines. The process begins with systematic preprocessing, which includes imputation, outlier removal, scaling, and labelling of the remaining useful life. Dimensionality is reduced using a hybrid selection method that combines variance filtering, recursive elimination, and gradient-boosted importance scores, yielding a stable set of… More >

  • Open Access

    ARTICLE

    Advancing Android Ransomware Detection with Hybrid AutoML and Ensemble Learning Approaches

    Kirubavathi Ganapathiyappan1, Chahana Ravikumar1, Raghul Alagunachimuthu Ranganayaki1, Ayman Altameem2, Ateeq Ur Rehman3,*, Ahmad Almogren4,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072840 - 10 February 2026

    Abstract Android smartphones have become an integral part of our daily lives, becoming targets for ransomware attacks. Such attacks encrypt user information and ask for payment to recover it. Conventional detection mechanisms, such as signature-based and heuristic techniques, often fail to detect new and polymorphic ransomware samples. To address this challenge, we employed various ensemble classifiers, such as Random Forest, Gradient Boosting, Bagging, and AutoML models. We aimed to showcase how AutoML can automate processes such as model selection, feature engineering, and hyperparameter optimization, to minimize manual effort while ensuring or enhancing performance compared to traditional… More >

  • Open Access

    ARTICLE

    A Cooperative Hybrid Learning Framework for Automated Dandruff Severity Grading

    Sin-Ye Jhong1, Hui-Che Hsu1,2, Hsin-Hua Huang2, Chih-Hsien Hsia3,4,*, Yulius Harjoseputro2,5, Yung-Yao Chen2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.072633 - 10 February 2026

    Abstract Automated grading of dandruff severity is a clinically significant but challenging task due to the inherent ordinal nature of severity levels and the high prevalence of label noise from subjective expert annotations. Standard classification methods fail to address these dual challenges, limiting their real-world performance. In this paper, a novel, three-phase training framework is proposed that learns a robust ordinal classifier directly from noisy labels. The approach synergistically combines a rank-based ordinal regression backbone with a cooperative, semi-supervised learning strategy to dynamically partition the data into clean and noisy subsets. A hybrid training objective is… More >

  • Open Access

    ARTICLE

    Hybrid Quantum Gate Enabled CNN Framework with Optimized Features for Human-Object Detection and Recognition

    Nouf Abdullah Almujally1, Tanvir Fatima Naik Bukht2, Shuaa S. Alharbi3, Asaad Algarni4, Ahmad Jalal2,5, Jeongmin Park6,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072243 - 10 February 2026

    Abstract Recognising human-object interactions (HOI) is a challenging task for traditional machine learning models, including convolutional neural networks (CNNs). Existing models show limited transferability across complex datasets such as D3D-HOI and SYSU 3D HOI. The conventional architecture of CNNs restricts their ability to handle HOI scenarios with high complexity. HOI recognition requires improved feature extraction methods to overcome the current limitations in accuracy and scalability. This work proposes a Novel quantum gate-enabled hybrid CNN (QEH-CNN) for effective HOI recognition. The model enhances CNN performance by integrating quantum computing components. The framework begins with bilateral image filtering,… More >

  • Open Access

    ARTICLE

    Performance Analysis of Bandwidth Aware Hybrid Powered 5G Cloud Radio Access Network

    Md. Al-Hasan1, Mst. Rubina Aktar2, Fahmid Al Farid3,4,*, Md. Shamim Anower5, Abu Saleh Musa Miah1,6, Md. Hezerul Abdul Karim4,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071280 - 10 February 2026

    Abstract The rapid growth in available network bandwidth has directly contributed to an exponential increase in mobile data traffic, creating significant challenges for network energy consumption. Also, with the extraordinary growth of mobile communications, the data traffic has dramatically expanded, which has led to massive grid power consumption and incurred high operating expenditure (OPEX). However, the majority of current network designs struggle to efficiently manage a massive amount of data using little power, which degrades energy efficiency performance. Thereby, it is necessary to have an efficient mechanism to reduce power consumption when processing large amounts of… More >

  • Open Access

    ARTICLE

    Real-Time Mouth State Detection Based on a BiGRU-CLPSO Hybrid Model with Facial Landmark Detection for Healthcare Monitoring Applications

    Mong-Fong Horng1,#, Thanh-Lam Nguyen1,#, Thanh-Tuan Nguyen2,*, Chin-Shiuh Shieh1,*, Lan-Yuen Guo3, Chen-Fu Hung4, Chun-Chih Lo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075064 - 29 January 2026

    Abstract The global population is rapidly expanding, driving an increasing demand for intelligent healthcare systems. Artificial intelligence (AI) applications in remote patient monitoring and diagnosis have achieved remarkable progress and are emerging as a major development trend. Among these applications, mouth motion tracking and mouth-state detection represent an important direction, providing valuable support for diagnosing neuromuscular disorders such as dysphagia, Bell’s palsy, and Parkinson’s disease. In this study, we focus on developing a real-time system capable of monitoring and detecting mouth state that can be efficiently deployed on edge devices. The proposed system integrates the Facial… More >

Displaying 1-10 on page 1 of 1020. Per Page