Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (739)
  • Open Access


    Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems

    Mohammad Aldossary1,*, Hatem A. Alharbi2, Nasir Ayub3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.050862

    Abstract Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure, thereby revolutionizing computer processes. However, the rising energy consumption in cloud centers poses a significant challenge, especially with the escalating energy costs. This paper tackles this issue by introducing efficient solutions for data placement and node management, with a clear emphasis on the crucial role of the Internet of Things (IoT) throughout the research process. The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around… More >

  • Open Access


    Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis

    Jing Gao*, Mingxuan Ji, Hongjiang Wang, Zhongxiao Du

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5017-5030, 2024, DOI:10.32604/cmc.2024.050158

    Abstract With the continuous advancement of China’s “peak carbon dioxide emissions and Carbon Neutrality” process, the proportion of wind power is increasing. In the current research, aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data, a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine (IL-Bagging-DHKELM) error affinity propagation cluster analysis is proposed. The algorithm effectively combines deep hybrid kernel extreme learning machine (DHKELM) with incremental learning (IL). Firstly, an initial wind power prediction model is trained using the Bagging-DHKELM… More >

  • Open Access


    Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud Computing Environments

    Abdulelah Alwabel1,*, Chinmaya Kumar Swain2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4127-4148, 2024, DOI:10.32604/cmc.2024.048833

    Abstract Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources. However, the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes, thus making the application placement problem more complex than that in cloud computing. An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the… More >

  • Open Access


    THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector

    Monerah Alawadh*, Ahmed Barnawi

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4995-5015, 2024, DOI:10.32604/cmc.2024.048762

    Abstract Association rule learning (ARL) is a widely used technique for discovering relationships within datasets. However, it often generates excessive irrelevant or ambiguous rules. Therefore, post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors. Recently, several post-processing methods have been proposed, each with its own strengths and weaknesses. In this paper, we propose THAPE (Tunable Hybrid Associative Predictive Engine), which combines descriptive and predictive techniques. By leveraging both techniques, our aim is to enhance the quality of analyzing generated rules. This includes removing irrelevant… More >

  • Open Access


    An Imbalanced Data Classification Method Based on Hybrid Resampling and Fine Cost Sensitive Support Vector Machine

    Bo Zhu*, Xiaona Jing, Lan Qiu, Runbo Li

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3977-3999, 2024, DOI:10.32604/cmc.2024.048062

    Abstract When building a classification model, the scenario where the samples of one class are significantly more than those of the other class is called data imbalance. Data imbalance causes the trained classification model to be in favor of the majority class (usually defined as the negative class), which may do harm to the accuracy of the minority class (usually defined as the positive class), and then lead to poor overall performance of the model. A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article, which is based on a new hybrid… More >

  • Open Access


    Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm

    Mutasem K. Alsmadi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5175-5200, 2024, DOI:10.32604/cmc.2024.044065

    Abstract Lung cancer is among the most frequent cancers in the world, with over one million deaths per year. Classification is required for lung cancer diagnosis and therapy to be effective, accurate, and reliable. Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner. Machine Learning (ML) has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique. Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification. Normally,… More >

  • Open Access


    Knowledge Mapping of Hybrid Solar PV and Wind Energy Standalone Systems: A Bibliometric Analysis

    Quan Zhou*, Haiyang Li

    Energy Engineering, Vol.121, No.7, pp. 1781-1803, 2024, DOI:10.32604/ee.2024.049387

    Abstract Renewable energy is becoming more attractive as traditional fossil fuels are rapidly depleted and expensive, and their use would release pollutants. Power systems that use both wind and solar energy are more reliable and efficient than those that utilize only one energy. Hybrid renewable energy systems (HRES) are viable for remote areas operating in standalone mode. This paper aims to present the state-of-the-art research on off-grid solar-wind hybrid energy systems over the last two decades. More than 1500 published articles extracted from the Web of Science are analyzed by bibliometric methods and processed by CiteSpace… More >

  • Open Access


    Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM

    Lin Ma1, Liyong Wang1, Shuang Zeng1, Yutong Zhao1, Chang Liu1, Heng Zhang1, Qiong Wu2,*, Hongbo Ren2

    Energy Engineering, Vol.121, No.6, pp. 1473-1493, 2024, DOI:10.32604/ee.2024.047332

    Abstract Accurate load forecasting forms a crucial foundation for implementing household demand response plans and optimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations, a single prediction model is hard to capture temporal features effectively, resulting in diminished prediction accuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neural network (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), is proposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features from the original data, enhancing the quality of data… More >

  • Open Access


    Hybrid Strategy of Partitioned and Monolithic Methods for Solving Strongly Coupled Analysis of Inverse and Direct Piezoelectric and Circuit Coupling

    Daisuke Ishihara*, Syunnosuke Nozaki, Tomoya Niho, Naoto Takayama

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1371-1386, 2024, DOI:10.32604/cmes.2024.049694

    Abstract The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters. Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations. Each formulation has its advantages and disadvantages, and the choice depends on the characteristics of each coupled problem. This study proposes a new option: a coupled analysis strategy that combines the best features of the existing formulations, namely, the hybrid partitioned-monolithic method. The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric More >

  • Open Access


    A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine

    Sen-Hui Wang1,2,*, Xi Kang1, Cheng Wang1, Tian-Bing Ma1, Xiang He2, Ke Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1405-1427, 2024, DOI:10.32604/cmes.2024.049281

    Abstract Accurately predicting the remaining useful life (RUL) of bearings in mining rotating equipment is vital for mining enterprises. This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features. This study proposes a hybrid predictive model to assess the RUL of rolling element bearings. The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features. The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm. Subsequently,… More >

Displaying 11-20 on page 2 of 739. Per Page