Open Access iconOpen Access

ARTICLE

crossmark

Self-Tuning Parameters for Decision Tree Algorithm Based on Big Data Analytics

Manar Mohamed Hafez1,*, Essam Eldin F. Elfakharany1, Amr A. Abohany2, Mostafa Thabet3

1 College of Computing and Information Technology, Arab Academy for Science, Technology & Maritime Transport, Cairo, Egypt
2 Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt
3 Faculty of Computers and Information, Fayoum University, Fayoum, Egypt

* Corresponding Author: Manar Mohamed Hafez. Email: email

Computers, Materials & Continua 2023, 75(1), 943-958. https://doi.org/10.32604/cmc.2023.034078

Abstract

Big data is usually unstructured, and many applications require the analysis in real-time. Decision tree (DT) algorithm is widely used to analyze big data. Selecting the optimal depth of DT is time-consuming process as it requires many iterations. In this paper, we have designed a modified version of a (DT). The tree aims to achieve optimal depth by self-tuning running parameters and improving the accuracy. The efficiency of the modified (DT) was verified using two datasets (airport and fire datasets). The airport dataset has 500000 instances and the fire dataset has 600000 instances. A comparison has been made between the modified (DT) and standard (DT) with results showing that the modified performs better. This comparison was conducted on multi-node on Apache Spark tool using Amazon web services. Resulting in accuracy with an increase of 6.85% for the first dataset and 8.85% for the airport dataset. In conclusion, the modified DT showed better accuracy in handling different-sized datasets compared to standard DT algorithm.

Keywords


Cite This Article

M. M. Hafez, E. E.F. Elfakharany, A.A. Abohany and M. Thabet, "Self-tuning parameters for decision tree algorithm based on big data analytics," Computers, Materials & Continua, vol. 75, no.1, pp. 943–958, 2023.



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1785

    View

  • 402

    Download

  • 0

    Like

Share Link