Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Distributed Computing-Based Optimal Route Finding Algorithm for Trusted Devices in the Internet of Things

    Amal Al-Rasheed1, Rahim Khan2,*, Fahad Alturise3, Salem Alkhalaf4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 957-973, 2025, DOI:10.32604/cmc.2025.064102 - 09 June 2025

    Abstract The Internet of Things (IoT) is a smart infrastructure where devices share captured data with the respective server or edge modules. However, secure and reliable communication is among the challenging tasks in these networks, as shared channels are used to transmit packets. In this paper, a decision tree is integrated with other metrics to form a secure distributed communication strategy for IoT. Initially, every device works collaboratively to form a distributed network. In this model, if a device is deployed outside the coverage area of the nearest server, it communicates indirectly through the neighboring devices.… More >

  • Open Access

    ARTICLE

    Robust Real-Time Analysis of Cow Behaviors Using Accelerometer Sensors and Decision Trees with Short Data Windows and Misalignment Compensation

    Duc-Nghia Tran1, Viet-Manh Do1,2, Manh-Tuyen Vi3,*, Duc-Tan Tran3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2525-2553, 2025, DOI:10.32604/cmc.2025.062590 - 16 April 2025

    Abstract This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors. Data collection and behavioral analysis are achieved using machine learning (ML) algorithms through accelerometer sensors. However, behavioral analysis poses challenges due to the complexity of cow activities. The task becomes more challenging in a real-time behavioral analysis system with the requirement for shorter data windows and energy constraints. Shorter windows may lack sufficient information, reducing algorithm performance. Additionally, the sensor’s position on the cows may shift during practical use, altering the collected accelerometer… More >

  • Open Access

    ARTICLE

    Utilizing Machine Learning and SHAP Values for Improved and Transparent Energy Usage Predictions

    Faisal Ghazi Beshaw1, Thamir Hassan Atyia2, Mohd Fadzli Mohd Salleh1, Mohamad Khairi Ishak3, Abdul Sattar Din1,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3553-3583, 2025, DOI:10.32604/cmc.2025.061400 - 16 April 2025

    Abstract The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries. In order to improve the precision and openness of energy consumption projections, this study investigates the combination of machine learning (ML) methods with Shapley additive explanations (SHAP) values. The study evaluates three distinct models: the first is a Linear Regressor, the second is a Support Vector Regressor, and the third is a Decision Tree Regressor, which was scaled up to a Random Forest Regressor/Additions made were the third one which was… More >

  • Open Access

    ARTICLE

    BIG-ABAC: Leveraging Big Data for Adaptive, Scalable, and Context-Aware Access Control

    Sondes Baccouri1,2,#,*, Takoua Abdellatif 3,#

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1071-1093, 2025, DOI:10.32604/cmes.2025.062902 - 11 April 2025

    Abstract Managing sensitive data in dynamic and high-stakes environments, such as healthcare, requires access control frameworks that offer real-time adaptability, scalability, and regulatory compliance. BIG-ABAC introduces a transformative approach to Attribute-Based Access Control (ABAC) by integrating real-time policy evaluation and contextual adaptation. Unlike traditional ABAC systems that rely on static policies, BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes, ensuring precise and efficient access control. Leveraging decision trees evaluated in real-time, BIG-ABAC overcomes the limitations of conventional access control models, enabling seamless adaptation to complex, high-demand scenarios. The framework adheres to the… More >

  • Open Access

    ARTICLE

    XGBoost-Based Power Grid Fault Prediction with Feature Enhancement: Application to Meteorology

    Kai Liu1, Meizhao Liu1, Ming Tang1, Chen Zhang2,*, Junwu Zhu2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2893-2908, 2025, DOI:10.32604/cmc.2024.057074 - 17 February 2025

    Abstract The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to More >

  • Open Access

    ARTICLE

    Overfitting in Machine Learning: A Comparative Analysis of Decision Trees and Random Forests

    Erblin Halabaku, Eliot Bytyçi*

    Intelligent Automation & Soft Computing, Vol.39, No.6, pp. 987-1006, 2024, DOI:10.32604/iasc.2024.059429 - 30 December 2024

    Abstract Machine learning has emerged as a pivotal tool in deciphering and managing this excess of information in an era of abundant data. This paper presents a comprehensive analysis of machine learning algorithms, focusing on the structure and efficacy of random forests in mitigating overfitting—a prevalent issue in decision tree models. It also introduces a novel approach to enhancing decision tree performance through an optimized pruning method called Adaptive Cross-Validated Alpha CCP (ACV-CCP). This method refines traditional cost complexity pruning by streamlining the selection of the alpha parameter, leveraging cross-validation within the pruning process to achieve More >

  • Open Access

    ARTICLE

    Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection

    Islam Zada1,*, Mohammed Naif Alatawi2, Syed Muhammad Saqlain1, Abdullah Alshahrani3, Adel Alshamran4, Kanwal Imran5, Hessa Alfraihi6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2917-2939, 2024, DOI:10.32604/cmc.2024.052835 - 15 August 2024

    Abstract Malware attacks on Windows machines pose significant cybersecurity threats, necessitating effective detection and prevention mechanisms. Supervised machine learning classifiers have emerged as promising tools for malware detection. However, there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection. Addressing this gap can provide valuable insights for enhancing cybersecurity strategies. While numerous studies have explored malware detection using machine learning techniques, there is a lack of systematic comparison of supervised classifiers for Windows malware detection. Understanding the relative effectiveness of these classifiers can inform the selection of… More >

  • Open Access

    ARTICLE

    Impact Damage Testing Study of Shanxi-Beijing Natural Gas Pipeline Based on Decision Tree Rotary Tiller Operation

    Liqiong Chen1, Kai Zhang1,*, Song Yang1, Duo Xu1, Weihe Huang1, Hongxuan Hu2, Haonan Liu2

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 683-706, 2024, DOI:10.32604/sdhm.2024.049536 - 19 July 2024

    Abstract The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline. Residents in the area use rototillers for planting and harvesting; however, the depth of the rototillers into the ground is greater than the depth of the pipeline, posing a significant threat to the safe operation of the pipeline. Therefore, it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe operation of pipelines. This article focuses on the Shanxi-Beijing natural gas pipeline, utilizing finite element simulation software to establish a finite More >

  • Open Access

    ARTICLE

    Intelligence COVID-19 Monitoring Framework Based on Deep Learning and Smart Wearable IoT Sensors

    Fadhil Mukhlif1,*, Norafida Ithnin1, Roobaea Alroobaea2, Sultan Algarni3, Wael Y. Alghamdi2, Ibrahim Hashem4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 583-599, 2023, DOI:10.32604/cmc.2023.038757 - 31 October 2023

    Abstract The World Health Organization (WHO) refers to the 2019 new coronavirus epidemic as COVID-19, and it has caused an unprecedented global crisis for several nations. Nearly every country around the globe is now very concerned about the effects of the COVID-19 outbreaks, which were previously only experienced by Chinese residents. Most of these nations are now under a partial or complete state of lockdown due to the lack of resources needed to combat the COVID-19 epidemic and the concern about overstretched healthcare systems. Every time the pandemic surprises them by providing new values for various… More >

  • Open Access

    ARTICLE

    Ensemble-Based Approach for Efficient Intrusion Detection in Network Traffic

    Ammar Almomani1,2,*, Iman Akour3, Ahmed M. Manasrah4,5, Omar Almomani6, Mohammad Alauthman7, Esra’a Abdullah1, Amaal Al Shwait1, Razan Al Sharaa1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2499-2517, 2023, DOI:10.32604/iasc.2023.039687 - 21 June 2023

    Abstract The exponential growth of Internet and network usage has necessitated heightened security measures to protect against data and network breaches. Intrusions, executed through network packets, pose a significant challenge for firewalls to detect and prevent due to the similarity between legitimate and intrusion traffic. The vast network traffic volume also complicates most network monitoring systems and algorithms. Several intrusion detection methods have been proposed, with machine learning techniques regarded as promising for dealing with these incidents. This study presents an Intrusion Detection System Based on Stacking Ensemble Learning base (Random Forest, Decision Tree, and k-Nearest-Neighbors). More >

Displaying 1-10 on page 1 of 71. Per Page