Open Access iconOpen Access

ARTICLE

crossmark

Fake News Detection Using Machine Learning and Deep Learning Methods

Ammar Saeed1,*, Eesa Al Solami2

1 Department of Computer Science, Comsats University Islamabad, Wah Cantt, 47010, Pakistan
2 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, 21959, Saudi Arabia

* Corresponding Author: Ammar Saeed. Email: email

Computers, Materials & Continua 2023, 77(2), 2079-2096. https://doi.org/10.32604/cmc.2023.030551

Abstract

The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms. Some social media sources contribute to the propagation of fake news that has no real validity, but they accumulate over time and begin to appear in the feed of every consumer producing even more ambiguity. To sustain the value of social media, such stories must be distinguished from the true ones. As a result, an automated system is required to save time and money. The classification of fake news and misinformation from social media data corpora is the subject of this research. Several preprocessing and data improvement procedures are used to gather and preprocess two fake news datasets. Deep text features are extracted using word embedding models Word2vec and Global Vectors for Word representation while textual features are extracted using n-gram approaches named Term Frequency-Inverse Document Frequency and Bag of Words from both datasets individually. Bidirectional Encoder Representations from Transformers (BERT) is also employed to derive embedded representations from the input data. Finally, three Machine Learning (ML) and two Deep Learning (DL) algorithms are utilized for fake news classification. BERT also carries out the classification of embedded outcomes generated by it in parallel with the ML and DL models. In terms of overall performance, the DL-based Convolutional Neural Network stands out in the case of the first while BERT performs better in the case of the second dataset.

Keywords


Cite This Article

APA Style
Saeed, A., Solami, E.A. (2023). Fake news detection using machine learning and deep learning methods. Computers, Materials & Continua, 77(2), 2079-2096. https://doi.org/10.32604/cmc.2023.030551
Vancouver Style
Saeed A, Solami EA. Fake news detection using machine learning and deep learning methods. Comput Mater Contin. 2023;77(2):2079-2096 https://doi.org/10.32604/cmc.2023.030551
IEEE Style
A. Saeed and E.A. Solami, “Fake News Detection Using Machine Learning and Deep Learning Methods,” Comput. Mater. Contin., vol. 77, no. 2, pp. 2079-2096, 2023. https://doi.org/10.32604/cmc.2023.030551



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 848

    View

  • 537

    Download

  • 0

    Like

Share Link