Open Access iconOpen Access

ARTICLE

Machine Learning-based Inverse Model for Few-Mode Fiber Designs

Bhagyalaxmi Behera1, Gyana Ranjan Patra1, Shailendra Kumar Varshney2, Mihir Narayan Mohanty1,*

1 ITER, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
2 Department of Electronics and Electrical Communication Engineering, IIT, Kharagpur, 721302, India

* Corresponding Author: Mihir Narayan Mohanty. Email: email

Computer Systems Science and Engineering 2023, 45(1), 311-328. https://doi.org/10.32604/csse.2023.029325

Abstract

The medium for next-generation communication is considered as fiber for fast, secure communication and switching capability. Mode division and space division multiplexing provide an excellent switching capability with high data transmission rate. In this work, the authors have approached an inverse modeling technique using regression-based machine learning to design a weakly coupled few-mode fiber for facilitating mode division multiplexing. The technique is adapted to predict the accurate profile parameters for the proposed few-mode fiber to obtain the maximum number of modes. It is for a three-ring-core few-mode fiber for guiding five, ten, fifteen, and twenty modes. Three types of regression models namely ordinary least-square linear multi-output regression, k-nearest neighbors of multi-output regression, and ID3 algorithm-based decision trees for multi-output regression are used for predicting the multiple profile parameters. It is observed that the ID3-based decision tree for multioutput regression is the robust, highly-accurate machine learning model for fast modeling of FMFs. The proposed fiber claims to be an efficient candidate for the next-generation 5G and 6G backhaul networks using mode division multiplexing.

Keywords


Cite This Article

APA Style
Behera, B., Patra, G.R., Varshney, S.K., Mohanty, M.N. (2023). Machine learning-based inverse model for few-mode fiber designs. Computer Systems Science and Engineering, 45(1), 311-328. https://doi.org/10.32604/csse.2023.029325
Vancouver Style
Behera B, Patra GR, Varshney SK, Mohanty MN. Machine learning-based inverse model for few-mode fiber designs. Comput Syst Sci Eng. 2023;45(1):311-328 https://doi.org/10.32604/csse.2023.029325
IEEE Style
B. Behera, G.R. Patra, S.K. Varshney, and M.N. Mohanty "Machine Learning-based Inverse Model for Few-Mode Fiber Designs," Comput. Syst. Sci. Eng., vol. 45, no. 1, pp. 311-328. 2023. https://doi.org/10.32604/csse.2023.029325



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1156

    View

  • 611

    Download

  • 0

    Like

Share Link