Home / Journals / FHMT / Online First
Special Issues
  • Open Access

    ARTICLE

    Numerical Analysis of Non-Uniform Pollutant Distribution in an Internal Space of Tank and the Efficacy of an Active Purification Strategy

    Xiaolong Li, Hui Chen, Yingwen Liu, Peng Yang*
    Frontiers in Heat and Mass Transfer, DOI:10.32604/fhmt.2025.070537
    (This article belongs to the Special Issue: Microscale Heat and Mass Transfer and Efficient Energy Conversion)
    Abstract Hazardous gas intrusion in tightly sealed and geometrically complex confined spaces, such as armored tanks, poses a critical threat to occupant health. The intricate internal structure of these systems may lead to non-intuitive pollutant transport pathways. However, the spatial and temporal evolution of these structures, as well as the intrinsic mechanisms of the purification systems, remain poorly elucidated. In this study, a high-fidelity, transient three-dimensional computational fluid dynamics (CFD) model was developed to simulate the leakage and dispersion of carbon monoxide (CO) and nitrogen dioxide (NO2) using the RNG k-ε turbulence model. Scenarios with and without… More >

  • Open Access

    ARTICLE

    Analytical Modeling of Internal Thermal Mass: Transient Heat Conduction in a Sphere under Constant, Exponential, and Periodic Ambient Temperatures

    Liangjian Lei1,2, Yihang Lu1,2,*
    Frontiers in Heat and Mass Transfer, DOI:10.32604/fhmt.2025.072643
    (This article belongs to the Special Issue: Heat Transfer Analysis and Optimization in Energy Systems)
    Abstract Internal thermal mass, such as furniture and partitions, plays a crucial role in enhancing building energy efficiency and indoor thermal comfort by passively regulating temperature fluctuations. However, the irregular geometry of these elements poses a significant challenge for accurate modeling in building energy simulations. This study addresses this gap by developing a rigorous analytical model that idealizes internal thermal mass as a sphere, thereby capturing multi-directional heat conduction effects that are neglected in simpler one-dimensional slab models. The transient heat conduction within the sphere is solved analytically using Duhamel’s theorem for three representative indoor air… More >

  • Open Access

    ARTICLE

    Surface Wettability and Boiling Heat Transfer Enhancement in Microchannels Using Graphene Nanoplatelet and Multi-Walled Carbon Nanotube Coatings

    Ghinwa Al Mimar1, Natrah Kamaruzaman1,*, Kamil Talib Alkhateeb2
    Frontiers in Heat and Mass Transfer, DOI:10.32604/fhmt.2025.070118
    (This article belongs to the Special Issue: Microscale Heat and Mass Transfer and Efficient Energy Conversion)
    Abstract The pivotal role microchannels play in the thermal management of electronic components has, in recent decades, prompted extensive research into methods for enhancing their heat transfer performance. Among these methods, surface wettability modification was found to be highly effective owing to its significant influence on boiling dynamics and heat transfer mechanisms. In this study, we modified surface wettability using a nanocomposite coating composed of graphene nano plate (GNPs) and multi-walled carbon nanotubes (MWCNT) and then examined how the modification affected the transfer of boiling heat in microchannels. The resultant heat transfer coefficients for hydrophilic and… More >

  • Open Access

    ARTICLE

    Semi Analytical Solution of MHD and Heat Transfer of Couple Stress Fluid over a Stretching Sheet with Radiation in Porous Medium

    Sara I. Abdelsalam1,2,*, M. Khairy3, W. Abbas3, Ahmed M. Megahed4, M. S. Emam5
    Frontiers in Heat and Mass Transfer, DOI:10.32604/fhmt.2025.069711
    (This article belongs to the Special Issue: Advances in Computational Thermo-Fluids and Nanofluids)
    Abstract This comprehensive research examines the dynamics of magnetohydrodynamic (MHD) flow and heat transfer within a couple stress fluid. The investigation specifically focuses on the fluid’s behavior over a vertical stretching sheet embedded within a porous medium, providing valuable insights into the complex interactions between fluid mechanics, thermal transport, and magnetic fields. This study accounts for the significant impact of heat generation and thermal radiation, crucial factors for enhancing heat transfer efficiency in various industrial and technological contexts. The research employs mathematical techniques to simplify complex partial differential equations (PDEs) governing fluid flow and heat transfer.… More >

  • Open Access

    ARTICLE

    Analysis of Air Conditioning Unit Performance Due to Variations in Water Cooling Temperature Using an Extra Cooling Water Loop

    Noor Moneer Basher1, Omar Rafae Alomar1,*, Omar Mohammed Ali2, Diyar Abdullah Ahmed3
    Frontiers in Heat and Mass Transfer, DOI:10.32604/fhmt.2025.066997
    Abstract The energy consumption of a Split air conditioning unit (ACU) inside a building is extremely large, and efforts to decrease this issue are ongoing. The current work aims to experimentally investigate the thermal performance of ACU using an external cooling-water loop for pre-cooling the condenser to improve the efficiency and to reduce energy consumption by reducing refrigerant temperature before entering the condenser, thereby reducing the coefficient of performance. The experiments are performed on ACU with and without using an external cooling-water loop under different climate conditions. By using the experimental data, the systems’ performances for… More >

  • Open Access

    ARTICLE

    Methods of Selecting Adaptive Artificial Viscosity in Completely Conservative Difference Schemes for Gas Dynamics Equations in Euler Variables

    Marina Ladonkina1, Viktoriia Podryga1,*, Yury Poveshchenko1, Haochen Zhang2
    Frontiers in Heat and Mass Transfer, DOI:10.32604/fhmt.2025.066953
    (This article belongs to the Special Issue: Heat and Mass Transfer in Energy Equipment)
    Abstract The work presents new methods for selecting adaptive artificial viscosity (AAV) in iterative algorithms of completely conservative difference schemes (CCDS) used to solve gas dynamics equations in Euler variables. These methods allow to effectively suppress oscillations, including in velocity profiles, as well as computational instabilities in modeling gas-dynamic processes described by hyperbolic equations. The methods can be applied both in explicit and implicit (method of separate sweeps) iterative processes in numerical modeling of gas dynamics in the presence of heat and mass transfer, as well as in solving problems of magnetohydrodynamics and computational astrophysics. In… More >