Table of Content

Open Access iconOpen Access


Soft Computing Techniques for Classification of Voiced/Unvoiced Phonemes

Mohammed Algabria,c, Mohamed Abdelkader Bencherifc, Mansour Alsulaimanb,c, Ghulam Muhammadb, Mohamed Amine Mekhtichec

a Computer Science Department, King Saud University, Riyadh, Saudi Arabia;
b Computer Engineering Department, King Saud University, Riyadh, Saudi Arabia;
c Center of Smart Robotics Research (CS2R), King Saud University, Riyadh, Saudi Arabia

* Corresponding Author: Mohammed Algabri, email

Intelligent Automation & Soft Computing 2018, 24(2), 267-274.


A method that uses fuzzy logic to classify two simple speech features for the automatic classification of voiced and unvoiced phonemes is proposed. In addition, two variants, in which soft computing techniques are used to enhance the performance of fuzzy logic by tuning the parameters of the membership functions, are also presented. The three methods, manually constructed fuzzy logic (VUFL), fuzzy logic optimized with genetic algorithm (VUFL-GA), and fuzzy logic with optimized particle swarm optimization (VUFL-PSO), are implemented and then evaluated using the TIMIT speech corpus. Performance is evaluated using the TIMIT database in both clean and noisy environments. Four different noise types from the AURORA database—babble, white, restaurant, and car noise—at six different signal-to-noise ratios (SNRs) are used. In all cases, the optimized fuzzy logic methods (VUFLGA and VUFL-PSO) outperformed manual fuzzy logic (VUFL). The proposed method and variants are suitable for applications featuring the presence of highly noisy environments. In addition, classification accuracy by gender is also studied.


Cite This Article

M. Algabri, M. A. Bencherif, M. Alsulaiman, G. Muhammad and M. A. Mekhtiche, "Soft computing techniques for classification of voiced/unvoiced phonemes," Intelligent Automation & Soft Computing, vol. 24, no.2, pp. 267–274, 2018.

cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1093


  • 822


  • 0


Share Link