Open Access iconOpen Access

ARTICLE

crossmark

Improved Control in Single Phase Inverter Grid-Tied PV System Using Modified PQ Theory

Nur Fairuz Mohamed Yusof1, Dahaman Ishak2, Muhammad Ammirrul Atiqi Mohd Zainuri3,*, Muhammad Najwan Hamidi2, Zuhair Muhammed Alaas4, Mohamed Mostafa Ramadan Ahmed5

1 Faculty of Electrical Engineering &Technology, Universiti Malaysia Perlis, 02600, Arau, Malaysia
2 School of Electrical & Electronic Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Malaysia
3 Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor, 43600, Malaysia
4 School of Engineering, Jazan University, Jazan, Saudi Arabia
5 Faculty of Technology and Education, Helwan University, Cairo, Egypt

* Corresponding Author: Muhammad Ammirrul Atiqi Mohd Zainuri. Email: email

Intelligent Automation & Soft Computing 2023, 37(2), 2441-2457. https://doi.org/10.32604/iasc.2023.037778

Abstract

Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic (PV) grid-connected systems diversified. This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total harmonic distortion (THD) even under nonlinear load applications by improving its control scheme. The proposed system is expected to operate in both stand-alone mode and grid-connected mode. In stand-alone mode, the proposed controller supplies power to critical loads, alternatively during grid-connected mode provide excess energy to the utility. A modified variable step incremental conductance (VS-InCond) algorithm is designed to extract maximum power from PV. Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller (PQ-DBHCC) to produce a reference current based on a decomposition of a single-phase load current. The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters, due to excessive current harmonics in the grid. Therefore, the proposed method generates a close-loop reference current for the switching scheme, hence, minimizing the inverter voltage distortion caused by the excessive grid current harmonics. The simulation findings suggest the proposed control technique can effectively yield more than 97% of power conversion efficiency while suppressing the grid current THD by less than 2% and maintaining the unity power factor at the grid side. The efficacy of the proposed controller is simulated using MATLAB/Simulink.

Keywords


Cite This Article

APA Style
Yusof, N.F.M., Ishak, D., Zainuri, M.A.A.M., Hamidi, M.N., Alaas, Z.M. et al. (2023). Improved control in single phase inverter grid-tied PV system using modified PQ theory. Intelligent Automation & Soft Computing, 37(2), 2441-2457. https://doi.org/10.32604/iasc.2023.037778
Vancouver Style
Yusof NFM, Ishak D, Zainuri MAAM, Hamidi MN, Alaas ZM, Ahmed MMR. Improved control in single phase inverter grid-tied PV system using modified PQ theory. Intell Automat Soft Comput . 2023;37(2):2441-2457 https://doi.org/10.32604/iasc.2023.037778
IEEE Style
N.F.M. Yusof, D. Ishak, M.A.A.M. Zainuri, M.N. Hamidi, Z.M. Alaas, and M.M.R. Ahmed, “Improved Control in Single Phase Inverter Grid-Tied PV System Using Modified PQ Theory,” Intell. Automat. Soft Comput. , vol. 37, no. 2, pp. 2441-2457, 2023. https://doi.org/10.32604/iasc.2023.037778



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 775

    View

  • 420

    Download

  • 0

    Like

Share Link