Computational Analysis for Computer Network Model with Fuzziness
Wafa F. Alfwzan1, Dumitru Baleanu2,3,4, Fazal Dayan5,*, Sami Ullah5, Nauman Ahmed4,6, Muhammad Rafiq7,8, Ali Raza4,9
Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1909-1924, 2023, DOI:10.32604/iasc.2023.039249
(This article belongs to the Special Issue: Human Behaviour Analysis using Fuzzy Neural Networks)
Abstract A susceptible, exposed, infectious, quarantined and recovered (SEIQR) model with fuzzy parameters is studied in this work. Fuzziness in the model arises due to the different degrees of susceptibility, exposure, infectivity, quarantine and recovery among the computers under consideration due to the different sizes, models, spare parts, the surrounding environments of these PCs and many other factors like the resistance capacity of the individual PC against the virus, etc. Each individual PC has a different degree of infectivity and resistance against infection. In this scenario, the fuzzy model has richer dynamics than its classical counterpart More >