Vol.30, No.1, 2021-Table of Contents
  • A Hybrid Deep Learning Intrusion Detection Model for Fog Computing Environment
  • Abstract Fog computing extends the concept of cloud computing by providing the services of computing, storage, and networking connectivity at the edge between data centers in cloud computing environments and end devices. Having the intelligence at the edge enables faster real-time decision-making and reduces the amount of data forwarded to the cloud. When enhanced by fog computing, the Internet of Things (IoT) brings low latency and improves real time and quality of service (QoS) in IoT applications of augmented reality, smart grids, smart vehicles, and healthcare. However, both cloud and fog computing environments are vulnerable to several kinds of attacks that… More
  •   Views:556       Downloads:311        Download PDF
  • Expert System for Stable Power Generation Prediction in Microbial Fuel Cell
  • Abstract Expert Systems are interactive and reliable computer-based decision-making systems that use both facts and heuristics for solving complex decision-making problems. Generally, the cyclic voltammetry (CV) experiments are executed a random number of times (cycles) to get a stable production of power. However, presently there are not many algorithms or models for predicting the power generation stable criteria in microbial fuel cells. For stability analysis of Medicinal herbs’ CV profiles, an expert system driven by the augmented K-means clustering algorithm is proposed. Our approach requires a dataset that contains voltage-current relationships from CV experiments on the related subjects (plants/herbs). This new… More
  •   Views:370       Downloads:215        Download PDF
  • A Shadowed Rough-fuzzy Clustering Algorithm Based on Mahalanobis Distance for Intrusion Detection
  • Abstract Intrusion detection has been widely used in many application domains; thus, it has caught significant attention in academic fields these years. Assembled with more and more sub-systems, the network is more vulnerable to multiple attacks aiming at the network security. Compared with the other issues such as complex environment and resources-constrained devices, network security has been the biggest challenge for Internet construction. To deal with this problem, a fundamental measure for safeguarding network security is to select an intrusion detection algorithm. As is known, it is less effective to determine the abnormal behavior as an intrusion and learn the entire… More
  •   Views:274       Downloads:171        Download PDF
  • Research and Development of a Brain-Controlled Wheelchair for Paralyzed Patients
  • Abstract Smart wheelchairs play a significant role in supporting disabled people. Individuals with motor function impairments due to some disorders such as strokes or multiple sclerosis face frequent moving difficulties. Hence, they need constant support from an assistant. This paper presents a brain-controlled wheelchair model to assist disabled and paralyzed patients. The wheelchair is controlled by interpreting Electroencephalogram (EEG) signals, also known as brain waves. In the EEG technique, an electrode cap is positioned on the user’s scalp to receive EEG signals, which are detected and transformed by the Arduino microcontroller into motion commands, which drive the wheelchair. The proposed wheelchair… More
  •   Views:461       Downloads:489        Download PDF
  • Intrusion Detection Using a New Hybrid Feature Selection Model
  • Abstract Intrusion detection is an important topic that aims at protecting computer systems. Besides, feature selection is crucial for increasing the performance of intrusion detection. This paper employs a new hybrid feature selection model for intrusion detection. The implemented model uses Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) algorithms in a new manner. In addition, this study introduces two new models called (PSO-GWO-NB) and (PSO-GWO-ANN) for feature selection and intrusion detection. PSO and GWO show emergent results in feature selection for several purposes and applications. This paper uses PSO and GWO to select features for the intrusion detection system.… More
  •   Views:315       Downloads:182        Download PDF
  • Research on College English Teaching Model Based on Decision Trees
  • Abstract English teaching has always attracted much attention. However, the processes of its transmission and acquirement is often divided into two separate parts, which seriously hinders the effective implementation of its objectives. Teachers attach particular importance to the choice of the curriculum structure and teaching material. Students are busy comprehending the assignments their teachers deem important. Under such a scenario, the effective acquisition of knowledge and the development of sustainable comprehensive abilities are ignored. The random forest algorithm in machine learning applications could play important role improving on the current English teaching system. A random forest model is constructed using a… More
  •   Views:257       Downloads:189        Download PDF
  • Utilization of Artificial Intelligence in Medical Image Analysis for COVID-19 Patients Detection
  • Abstract In the era of medical technology, automatic scan detection can be considered a charming tool in medical diagnosis, especially with rapidly spreading diseases. In light of the prevalence of the current Coronavirus disease (COVID-19), which is characterized as highly contagious and very complicated, it is urgent and necessary to find a quick way that can be practically implemented for diagnosing COVID-19. The danger of the virus lies in the fact that patients can spread the disease without showing any symptoms. Moreover, several vaccines have been produced and vaccinated in large numbers but, the outbreak does not stop. Therefore, it is… More
  •   Views:300       Downloads:196        Download PDF
  • Research on Detection Method of Interest Flooding Attack in Named Data Networking
  • Abstract In order to effectively detect interest flooding attack (IFA) in Named Data Networking (NDN), this paper proposes a detection method of interest flooding attack based on chi-square test and similarity test. Firstly, it determines the detection window size based on the distribution of information name prefixes (that is information entropy) in the current network traffic. The attackers may append arbitrary random suffix to a certain prefix in the network traffic, and then send a large number of interest packets that cannot get the response. Targeted at this problem, the sensitivity of chi-square test is used to detect the change of… More
  •   Views:278       Downloads:189        Download PDF
  • Resource Management and Task Offloading Issues in the Edge–Cloud Environment
  • Abstract With the increasing number of Internet of Things (IoT) devices connected to the internet, a platform is required to support the enormous amount of data they generate. Since cloud computing is far away from the connected IoT devices, applications that require low-latency, real-time interaction and high quality of service (QoS) may suffer network delay in using the Cloud. Consequently, the concept of edge computing has appeared to complement cloud services, working as an intermediate layer with computation capabilities between the Cloud and IoT devices, to overcome these limitations. Although edge computing is a promising enabler for issues related to latency… More
  •   Views:259       Downloads:185        Download PDF
  • An Intelligent Business Model for Product Price Prediction Using Machine Learning Approach
  • Abstract The price of a product plays a vital role in its market share. Customers usually buy a product when it fits their needs and budget. Therefore, it is an essential area in the business to make decisions about prices for each product. The major portion of the business profit is directly connected with the percentage of the sale, which relies on certain factors of customers including customers’ behavior and market competitors. It has been observed in the past that machine learning algorithms have made the decision-making process more effective and profitable in businesses. The fusion of machine learning with business… More
  •   Views:676       Downloads:253        Download PDF
  • Exploiting Rich Event Representation to Improve Event Causality Recognition
  • Abstract Event causality identification is an essential task for information extraction that has attracted growing attention. Early researchers were accustomed to combining the convolutional neural network or recurrent neural network models with external causal knowledge, but these methods ignore the importance of rich semantic representation of the event. The event is more structured, so it has more abundant semantic representation. We argue that the elements of the event, the interaction of the two events, and the context between the two events can enrich the event’s semantic representation and help identify event causality. Therefore, the effective semantic representation of events in event… More
  •   Views:241       Downloads:142        Download PDF
  • Semantic Analysis of Urdu English Tweets Empowered by Machine Learning
  • Abstract Development in the field of opinion mining and sentiment analysis has been rapid and aims to explore views or texts on various social media sites through machine-learning techniques with the sentiment, subjectivity analysis and calculations of polarity. Sentiment analysis is a natural language processing strategy used to decide if the information is positive, negative, or neutral and it is frequently performed on literature information to help organizations screen brand, item sentiment in client input, and comprehend client needs. In this paper, two strategies for sentiment analysis is proposed for word embedding and a bag of words on Urdu and English… More
  •   Views:316       Downloads:235        Download PDF
  • A Smart Comparative Analysis for Secure Electronic Websites
  • Abstract Online banking is an ideal method for conducting financial transactions such as e-commerce, e-banking, and e-payments. The growing popularity of online payment services and payroll systems, however, has opened new pathways for hackers to steal consumers’ information and money, a risk which poses significant danger to the users of e-commerce and e-banking websites. This study uses the selection method of the entire e-commerce and e-banking website dataset (Chi-Squared, Gini index, and main learning algorithm). The results of the analysis suggest the identification and comparison of machine learning and deep learning algorithm performance on binary category labels (legal, fraudulent) between similar… More
  •   Views:307       Downloads:264        Download PDF
  • Liver Lesions and Acute Intracerebral Hemorrhage Detection Using Multimodal Fusion
  • Abstract Medical image fusion is designed to help physicians in their decisions by providing them with a preclinical image with enough information. Accurate assessment and effective treatment of the disease reduce the time it takes to relieve the symptoms of the disease. This article utilizes an effective data fusion approach to work on two different imaging modalities; computed tomography (CT) and magnetic resonance imaging (MRI). The data fusion approach is based on the combination of singular value decomposition (SVD) and the Fast Discrete Curvelet Transform (FDCT) techniques to reduce processing time during the fusion process. The SVD-FDCT data fusion approach is… More
  •   Views:348       Downloads:208        Download PDF
  • Short Text Entity Disambiguation Algorithm Based on Multi-Word Vector Ensemble
  • Abstract With the rapid development of network media, the short text has become the main cover of information dissemination by quickly disseminating relevant entity information. However, the lack of context in the short text can easily lead to ambiguity, which will greatly reduce the efficiency of obtaining information and seriously affect the user’s experience, especially in the financial field. This paper proposed an entity disambiguation algorithm based on multi-word vector ensemble and decision to eliminate the ambiguity of entities and purify text information in information processing. First of all, we integrate a variety of unsupervised pre-trained word vector models as vector… More
  •   Views:317       Downloads:186        Download PDF
  • Modelling Supply Chain Information Collaboration Empowered with Machine Learning Technique
  • Abstract Information Collaboration of the supply chain is the domination and control of product flow information from the producer to the customer. The data information flow is correlated with demand fill-up, a role delivering service, and feedback. The collaboration of supply chain information is a complex contrivance that impeccably manages the efficiency flow and focuses on its vulnerable area. As there is always room for growth in the current century, major companies have shown a growing tendency to improve their supply chain’s productivity and sustainability to increase customer consumption in complying with environmental regulations. Therefore, in supply chain collaboration, it is… More
  •   Views:392       Downloads:245        Download PDF
  • A Multi-Task Network for Cardiac Magnetic Resonance Image Segmentation and Classification
  • Abstract Cardiomyopathy is a group of diseases that affect the heart and can cause serious health problems. Segmentation and classification are important for automating the clinical diagnosis and treatment planning for cardiomyopathy. However, this automation is difficult because of the poor quality of cardiac magnetic resonance (CMR) imaging data and varying dimensions caused by movement of the ventricle. To address these problems, a deep multi-task framework based on a convolutional neural network (CNN) is proposed to segment the left ventricle (LV) myocardium and classify cardiopathy simultaneously. The proposed model consists of a longitudinal encoder–decoder structure that obtains high- and low-level features… More
  •   Views:274       Downloads:158        Download PDF
  • Measurement-based Quantum Repeater Network Coding
  • Abstract Quantum network coding can effectively improve the aggregate throughput of quantum networks and alleviate bottlenecks caused by topological constraints. Most of previous schemes are dedicated to the efficient teleportation of unknown quantum states in a quantum network. Herein a proposal for transmission of deterministic known states over quantum repeater network based on quantum measurements. We show that the new protocol offers advantages over three aspects. Firstly, the senders in our protocol obtain the knowledge of the quantum state to be transmitted, which enables the autonomy of quantum network transmission. Secondly, we study the quantum repeater network coding for long-distance deterministic… More
  •   Views:249       Downloads:169        Download PDF
  • Blind and Visually Impaired User Interface to Solve Accessibility Problems
  • Abstract Blind and visually impaired (BVI) users often have interface accessibility problems while using mobile applications. This study was conducted to reduce the cognitive effort required for interface navigation by identifying the accessibility issues according to the user’s mental model. The study evaluated the accessibility of smartphone screens to solve organizational, presentation, and behavioral (OPB) problems of using mobile applications. Usability evaluation of an application was conducted and validated with a specific focus on BVI user experience. A total of 56 BVI participants were included in the evaluation. Overall, four tasks to assess organization, avoidance of redundant information, serialization of content,… More
  •   Views:342       Downloads:194        Download PDF
  • Main Factor Selection Algorithm and Stability Analysis of Regional FDI Statistics
  • Abstract There are various influencing factors in regional FDI (foreign direct investment) and it is difficult to identify the main influencing factors. For this reason, a main factor selection algorithm is proposed in this article for the main factors affecting regional FDI statistics by analyzing the regional economic characteristics and the possible influencing factors in the regional FDI. Then, an example is used to illustrate its effectiveness and its stability. Firstly, the characteristics of regional economy and the regional FDI data are introduced to develop the main factor selection algorithm based on the adaptive Lasso problem for the regional FDI and… More
  •   Views:238       Downloads:177        Download PDF
  • Intelligent Nutrition Diet Recommender System for Diabetic’s Patients
  • Abstract Diabetes is one of the ever-increasing menace crippling millions of people worldwide. It is an independent risk factor for many cardiovascular diseases including medium and small vessels and results in heart attack, stroke, kidney failure, blindness, and lower-limb amputations. According to a World Health Organization (WHO) report estimated 1.6 million deaths were the direct result of diabetes. Nutrition plays a vital role in diabetes management alongside physical activity, drugs, and insulin. Weight management can help to avert or delay at pre-diabetic stages. This research work explains the features of the Nutrition Diet Expert System (NDES), which will preferably be used… More
  •   Views:294       Downloads:296        Download PDF
  • Deep Learning Anomaly Detection Based on Hierarchical Status-Connection Features in Networked Control Systems
  • Abstract As networked control systems continue to be widely used in large-scale industrial productions, industrial cyber-attacks have become an inevitable problem that can cause serious damage to critical infrastructures. In practice, industrial intrusion detection has been widely acknowledged to detect abnormal communication behaviors. However, unlike traditional IT systems, networked control systems have their own communication characteristics due to specific industrial communication protocols. Thus, simple cyber-attack modeling is inadequate and impractical for high-efficiency intrusion detection because the characteristics of network control systems are less considered. Based on the status information and transmission connection in industrial communication data payloads, which can properly express… More
  •   Views:252       Downloads:167        Download PDF
  • Strategies for Reducing the Spread of COVID-19 Based on an Ant-Inspired Framework
  • Abstract Many living organisms respond to pandemics using strategies such as isolation. This is true, for example, of social insects, for whom the spread of disease can pose a high risk to colony survival. In light of such behaviors, the present study investigated a different way of developing strategies to mitigate the effects of the coronavirus pandemic. Specifically, we considered the strategies ants use to handle epidemics and limit disease spread within colonies. To enhance our understanding of these strategies, we explored ants’ social systems and how they specifically respond to infectious diseases. The early warning threshold system reflects the importance… More
  •   Views:289       Downloads:151        Download PDF
  • Robust Sound Source Localization Using Convolutional Neural Network Based on Microphone Array
  • Abstract In order to improve the performance of microphone array-based sound source localization (SSL), a robust SSL algorithm using convolutional neural network (CNN) is proposed in this paper. The Gammatone sub-band steered response power-phase transform (SRP-PHAT) spatial spectrum is adopted as the localization cue due to its feature correlation of consecutive sub-bands. Since CNN has the “weight sharing” characteristics and the advantage of processing tensor data, it is adopted to extract spatial location information from the localization cues. The Gammatone sub-band SRP-PHAT spatial spectrum are calculated through the microphone signals decomposed in frequency domain by Gammatone filters bank. The proposed algorithm… More
  •   Views:254       Downloads:184        Download PDF
  • Ontology-Based System for Educational Program Counseling
  • Abstract Choosing the right university program can be very challenging for students. This is especially the case in developing countries such as India and Pakistan, where university admission depends on not only the program of interest but also other factors such as the candidate’s financial standing. Since information on the Internet can be highly scattered, university candidates often need counseling from qualified people to decide their educational programs. Traditional database systems cannot effectively organize the large unstructured data related to university programs. It is challenging, then, for prospective students to acquire the information needed to make good decisions to consider factors… More
  •   Views:368       Downloads:243        Download PDF