Open Access
ARTICLE
Investigating Techniques to Optimise the Layout of Turbines in a Windfarm Using a Quantum Computer
Centre for Mathematical Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
* Corresponding Author: James Hancock. Email:
Journal of Quantum Computing 2025, 7, 55-79. https://doi.org/10.32604/jqc.2025.068127
Received 21 May 2025; Accepted 21 July 2025; Issue published 11 August 2025
Abstract
This paper investigates Windfarm Layout Optimization (WFLO), where we formulate turbine placement considering wake effects as a Quadratic Unconstrained Binary Optimization (QUBO) problem. Wind energy plays a critical role in the transition toward sustainable power systems, but the optimal placement of turbines remains a challenging combinatorial problem due to complex wake interactions. With recent advances in quantum computing, there is growing interest in exploring whether hybrid quantum-classical methods can provide advantages for such computationally intensive tasks. We investigate solving the resulting QUBO problem using the Variational Quantum Eigensolver (VQE) implemented on Qiskit’s quantum computer simulator, employing a quantum noise-free, gate-based circuit model. Three classical optimizers are discussed, with a detailed analysis of the two most effective approaches: Constrained Optimization BY Linear Approximation (COBYLA) and Bayesian Optimization (BO). We compare these simulated quantum results with two established classical optimization methods: Simulated Annealing (SA) and the Gurobi solver. The study focuses on 4 × 4 grid configurations (requiring 16 qubits), providing insights into near-term quantum algorithm applicability for renewable energy optimization.Keywords
Cite This Article
Copyright © 2025 The Author(s). Published by Tech Science Press.This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Submit a Paper
Propose a Special lssue
View Full Text
Download PDF
Downloads
Citation Tools