Open Access iconOpen Access

ARTICLE

Comparative Transcriptome Analysis of Seed Germination of a Cotton Variety with High Tolerance to Low Temperature

Genhai Hu1,*, Maoni Chao1, Xiuren Zhou2, Yuanzhi Fu2

1 College of Agriculture, Henan Institute of Science and Technology, Xinxiang, 453003, China
2 College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China

* Corresponding Author: Genhai Hu. Email: email

Phyton-International Journal of Experimental Botany 2023, 92(9), 2535-2554. https://doi.org/10.32604/phyton.2023.030163

Abstract

Gossypium hirsutum L. is an important cash crop native to the subtropics and is widely cultivated around the world. Low temperature is an important stress that seriously affects seed germination and emergence during planting. In this study, transcriptomic profiles of low-temperature- and normal-temperature-germinated seeds of Xinluzao 25, a variety with low-temperature tolerance and high germination rates, were analyzed and compared. The following results were obtained. (1) A total of 81.06 Gb of clean data were obtained after transcriptome sequencing and assembly, and 76,931 non-redundant Unigene sequences were obtained after data consolidation and concatenation; of these, 69,883 Unigene sequences were annotated. In addition, 55,463 Unigene transcript sequences (72.2%) were annotated for Gene Ontology (GO) classification, and 26,629 genes were involved in 50 metabolic pathways identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. (2) Three main pathways related to low-temperature tolerance of seed germination were identified: starch and sucrose metabolism, phenylpropanoid biosynthesis, and cysteine and methionine metabolism. Their main molecular functions involve the regulation of abscisic acid and activities of enzymes such as amylase, peroxidase, and oxidoreductase. During germination at low temperature, more genes were down-regulated than up-regulated genes at the protrusion stage (2 mm), and more genes were up-regulated than down-regulated at the germination stage (30 mm) after protrusion. (3) The enzyme activities at the two stages showed that amylase, peroxidase, catalase, and glutathione reductase had higher activities when the seeds germinated at 15°C. In this study, high expression of amylase, peroxidase, catalase, and glutathione reductase genes may be the main cause of increased tolerance to low temperature.

Keywords


Supplementary Material

Supplementary Material File

Cite This Article

APA Style
Hu, G., Chao, M., Zhou, X., Fu, Y. (2023). Comparative transcriptome analysis of seed germination of a cotton variety with high tolerance to low temperature. Phyton-International Journal of Experimental Botany, 92(9), 2535-2554. https://doi.org/10.32604/phyton.2023.030163
Vancouver Style
Hu G, Chao M, Zhou X, Fu Y. Comparative transcriptome analysis of seed germination of a cotton variety with high tolerance to low temperature. Phyton-Int J Exp Bot. 2023;92(9):2535-2554 https://doi.org/10.32604/phyton.2023.030163
IEEE Style
G. Hu, M. Chao, X. Zhou, and Y. Fu, “Comparative Transcriptome Analysis of Seed Germination of a Cotton Variety with High Tolerance to Low Temperature,” Phyton-Int. J. Exp. Bot., vol. 92, no. 9, pp. 2535-2554, 2023. https://doi.org/10.32604/phyton.2023.030163



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 709

    View

  • 489

    Download

  • 0

    Like

Share Link