PHYTONOpen Access

Phyton-International Journal of Experimental Botany

ISSN:0031-9457(print)
ISSN:1851-5657(online)
Publication Frequency:Monthly

  • Online
    Articles

    2145

  • on board
    editors

    131

Special lssues


About the Journal

Phyton-International Journal of Experimental Botany is an international journal that publishes research on all aspects of plant science. This journal welcomes original and exciting submissions that provide new and key insights into the origins, growth and development of plants from the molecular to the whole organism and its interactions with the biotic and abiotic environments.

Indexing and Abstracting

Thomson Scientific; Science Citation Index Expanded (SCIE); Journal Citation Report/Science Edition (JCR); Impact Factor (2022): 1.7; 5-Year Impact Factor: 1.4; Biological Abstracts; BIOSIS Previews; Scopus; EMBiology; Latindex; Field Crop Abstracts; CAB Abstracts; CABI Full Text; Periódica; TEEAL, The Essential Electronic Agricultural Library; Núcleo Básico de Revistas Científicas Argentinas (Agosto 2013–Julio 2015); SciELO (Scientific Electronic Library Online); Portal de Revistas en Biodiversidad; Portico, etc...

  • Open Access

    ARTICLE

    Differential Expression of Genes Related to Fruit Development and Capsaicinoids Synthesis in Habanero Pepper Plants Grown in Contrasting Soil Types

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 151-183, 2024, DOI:10.32604/phyton.2023.046943
    Abstract Habanero pepper (Capsicum chinense Jacq.) is a crop of economic relevance in the Peninsula of Yucatan. Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world, which gives them industrial importance. Soil is an important factor that affects pepper development, nutritional quality, and capsaicinoid content. However, the effect of soil type on fruit development and capsaicinoid metabolism has been little understood. This work aimed to compare the effect of soils with contrasting characteristics, black soil (BS) and red soil (RS), on the expression of genes related to the development of fruits, and… More >

  • Open Access

    ARTICLE

    Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 185-212, 2024, DOI:10.32604/phyton.2023.046811
    (This article belongs to this Special Issue: New Approaches to Mitigate Abiotic and Biotic Stresses for Improving Crop Productivity and Quality)
    Abstract Alginate oligosaccharides (AOS) enhance drought resistance in wheat (Triticum aestivum L.), but the definite mechanisms remain largely unknown. The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000. The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress. A total of 10,064 and 15,208 differentially expressed unigenes (DEGs) obtained from the AOS treatment and control samples at 24 and 72 h after dehydration, respectively, were mainly enriched in the biosynthesis of secondary metabolites (phenylpropanoid biosynthesis,… More >

  • Open Access

    ARTICLE

    Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 213-226, 2024, DOI:10.32604/phyton.2024.047150
    (This article belongs to this Special Issue: New Approaches to Mitigate Abiotic and Biotic Stresses for Improving Crop Productivity and Quality)
    Abstract Drought stress is a major factor affecting plant growth and crop yield production. Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts. To explore the effect of Polygonum minus extract (PME) in enhancing drought tolerance in plants, a study was set up in a glasshouse environment using 10 different treatment combinations. PME foliar application were designed in CRD and effects were closely observed related to the growth, physiology, and antioxidant system changes in maize (Zea mays L.) under well-watered and drought conditions. The seaweed extract (SWE) was used as a comparison. Plants subjected to… More >

  • Open Access

    ARTICLE

    Response Mechanisms to Flooding Stress in Mulberry Revealed by Multi-Omics Analysis

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 227-245, 2024, DOI:10.32604/phyton.2024.046521
    (This article belongs to this Special Issue: Multi-omics Approach to Understand Plant Stress Tolerance)
    Abstract Abiotic stress, including flooding, seriously affects the normal growth and development of plants. Mulberry (Morus alba), a species known for its flood resistance, is cultivated worldwide for economic purposes. The transcriptomic analysis has identified numerous differentially expressed genes (DEGs) involved in submergence tolerance in mulberry plants. However, a comprehensive analyses of metabolite types and changes under flooding stress in mulberry remain unreported. A non-targeted metabolomic analysis utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to further investigate the effects of flooding stress on mulberry. A total of 1,169 metabolites were identified, with 331 differentially accumulated metabolites (DAMs) exhibiting up-regulation in… More >

  • Open Access

    ARTICLE

    Effects of Inoculation with Phosphate Solubilizing Bacteria on the Physiology, Biochemistry, and Expression of Genes Related to the Protective Enzyme System of Fritillaria taipaiensis P. Y. Li

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 247-260, 2024, DOI:10.32604/phyton.2024.046452
    Abstract Fritillaria taipaiensis P. Y. Li is a widely used medicinal herb in treating pulmonary diseases. In recent years, its wild resources have become scarce, and the demand for efficient artificial cultivation has significantly increased. This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F. taipaiensis P. Y. Li to the cultivation process of F. taipaiensis P. Y. Li. The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F. taipaiensis P. Y. Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,… More >

  • Open Access

    ARTICLE

    Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 261-275, 2024, DOI:10.32604/phyton.2024.046331
    Abstract Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea. Traditional tea-picking machines may compromise the quality of the tea leaves. High-quality teas are often handpicked and need more delicate operations in intelligent picking machines. Compared with traditional image processing techniques, deep learning models have stronger feature extraction capabilities, and better generalization and are more suitable for practical tea shoot harvesting. However, current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks. We propose a tea shoot instance segmentation model based on multi-scale mixed attention… More >

  • Open Access

    ARTICLE

    A New Micropropagation Technology of Tilia amurensis: In Vitro Micropropagation of Mature Zygotic Embryos and the Establishment of a Plant Regeneration System

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 277-289, 2024, DOI:10.32604/phyton.2024.046989
    Abstract Tilia amurensis is an economically valuable broadleaf tree species in Northeast China. The production of high-quality T. amurensis varieties at commercial scales has been greatly limited by the low germination rates. There is thus a pressing need to develop an organogenesis protocol for in vitro propagation of T. amurensis to alleviate a shortage of high-quality T. amurensis seedlings. Here, we established a rapid in vitro propagation system for T. amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture media in different stages. We found that Woody plant medium (WPM) was the optimal primary culture… More >

  • Open Access

    ARTICLE

    A Bibliometric Analysis Unveils Valuable Insights into the Past, Present, and Future Dynamics of Plant Acclimation to Temperature

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 291-312, 2024, DOI:10.32604/phyton.2024.047281
    (This article belongs to this Special Issue: Photosynthetic Responses to Biotic and Abiotic Stress)
    Abstract Plant temperature acclimation is closely related to maintaining a positive carbon gain under future climate change. However, no systematic summary of the field has been conducted. Based on this, we analyzed data on plant temperature acclimation from the Web of Science Core Collection database using bibliometric software R, RStudio and VOSviewer. Our study demonstrated that a stabilized upward trajectory was noted in publications (298 papers) from 1986 to 2011, followed by a swift growth (373 papers) from 2012 to 2022. The most impactful journals were Plant Cell and Environment, boasting the greatest count of worldwide citations and articles, the highest… More >

  • Open Access

    ARTICLE

    Transcriptome-Wide Identification and Functional Analysis of PgSQE08-01 Gene in Ginsenoside Biosynthesis in Panax ginseng C. A. Mey.

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 313-327, 2024, DOI:10.32604/phyton.2024.047938
    (This article belongs to this Special Issue: Plant Secondary Metabolism and Functional Biology)
    Abstract Panax ginseng C. A. Mey. is an important plant species used in traditional Chinese medicine, whose primary active ingredient is a ginsenoside. Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes. Nonetheless, the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites. Squalene epoxidase (SQE) is a key enzyme in the mevalonic acid pathway, which affects the biosynthesis of secondary metabolites such as terpenoid. Using ginseng transcriptome, expression, and ginsenoside content databases, this study employed bioinformatic methods to systematically analyze the genes encoding… More >

  • Open Access

    ARTICLE

    Involvement of the ABA- and H2O2-Mediated Ascorbate–Glutathione Cycle in the Drought Stress Responses of Wheat Roots

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 329-342, 2024, DOI:10.32604/phyton.2024.046976
    (This article belongs to this Special Issue: Photosynthetic Responses to Biotic and Abiotic Stress)
    Abstract Abscisic acid (ABA), hydrogen peroxide (H2O2) and ascorbate (AsA)–glutathione (GSH) cycle are widely known for their participation in various stresses. However, the relationship between ABA and H2O2 levels and the AsA–GSH cycle under drought stress in wheat has not been studied. In this study, a hydroponic experiment was conducted in wheat seedlings subjected to 15% polyethylene glycol (PEG) 6000–induced dehydration. Drought stress caused the rapid accumulation of endogenous ABA and H2O2 and significantly decreased the number of root tips compared with the control. The application of ABA significantly increased the number of root tips, whereas the application of H2O2 markedly… More >

  • Open Access

    ARTICLE

    Analysis and Verification of the Conserved MYB Binding Element in the DFR Promoter in Compositae

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 343-353, 2024, DOI:10.32604/phyton.2024.047429
    (This article belongs to this Special Issue: Plant Secondary Metabolism and Functional Biology)
    Abstract Anthocyanins, ubiquitous in the Compositae family, are regulated by MYB (v-myb avian myeloblastosis viral oncogene homolog), playing an important role in anthocyanin synthesis. In this study, we analyzed the regulation pathway in which the MYB protein of subgroup 6 promotes dihydroflavonol reductase (DFR) expression in Compositae, and validated this law in Saussurea medusa through yeast one-hybrid experiments. Our results showed that MYB and DFR underwent purification selection, DFR promoter analysis revealed the presence of MYB binding site (GAGTTGAATGG) and bHLH binding site (CANNTG) at the sense strand of 84–116 nucleotide residues from the start codon. These two motifs were separated… More >

  • Open Access

    ARTICLE

    Comparative Study of Genetic Structure and Genetic Diversity between Wild and Cultivated Populations of Taxus cuspidata, Northeast China

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 355-369, 2024, DOI:10.32604/phyton.2024.047183
    (This article belongs to this Special Issue: Ecology, Diversity and Conservation of Rare and Endangered Plant Species)
    Abstract Taxus cuspidata is a rare plant with important medicinal and ornamental value. Aiming at the obvious differences between wild and cultivated populations of T. cuspidata from Northeast China, a total of 61 samples, that is, 33 wild yews and 28 cultivated yews were used to analyze the differences and correlations of the kinship, genetic diversity, and genetic structure between them by specific length amplified fragment sequencing (SLAF-seq). Finally, 470725 polymorphic SLAF tags and 58622 valid SNP markers were obtained. Phylogenetic analysis showed that 61 samples were classified into 2 clusters: wild populations and cultivated populations, and some wild yews were… More >

  • Open Access

    ARTICLE

    Morphometry and Mineral Content in the Seeds and Soil of Two Species of Argemone L. (Papaveraceae) in the Central Part of the Chihuahuan Desert

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 371-386, 2024, DOI:10.32604/phyton.2024.048338
    Abstract The genus Argemone L. (Papaveraceae) is found widely distributed in Mexico’s Chihuahuan Desert (CD). Some species of this genus are of phytochemical or ethnobotanical interest. They are inedible plants considered as scrubs. To date they have not been broadly studied; thus, their ecology is, to our knowledge, unknown. The present work was centered around carrying out a morphometric analysis and the determination of minerals in the soil and seeds of the wild populations of Argemone at sites belonging to two ecoregions of the CD in Mexico. In April 2021 and April 2022, seeds of Argemone spp., and soil samples were… More >

  • Open Access

    ARTICLE

    Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 387-411, 2024, DOI:10.32604/phyton.2024.047573
    (This article belongs to this Special Issue: Grassland Ecology in China under Global Change)
    Abstract Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were calculated, and ground and airborne… More >

Share Link