Open Access iconOpen Access

REVIEW

Salinity Stress in Wheat: Effects, Mechanisms and Management Strategies

Mahmoud F. Seleiman1,2,#,*, Muhammad Talha Aslam3,#, Bushra Ahmed Alhammad4, Muhammad Umair Hassan5, Rizwan Maqbool3, Muhammad Umer Chattha3, Imran Khan3, Harun Ireri Gitari6, Omer S. Uslu7, Rana Roy8, Martin Leonardo Battaglia9

1 Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
2 Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-kom, 32514, Egypt
3 Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
4 Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Riyadh, 11942, Saudi Arabia
5 Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
6 Department of Agricultural Sciences and Technology, School of Agriculture and Enterprise Development, Kenyatta University, Nairobi, 00100, Kenya
7 Department of Field Crops, Faculty of Agriculture, University of Sutcu Imam, Kahramanmaras, 46040, Turkey
8 Department of Agroforestry & Environmental Science, Faculty of Agriculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
9 Department of Animal Sciences, Cornell University, Ithaca, 14850, USA
# contributed equally in the manuscript

* Corresponding Author:Mahmoud F. Seleiman. Email: email

Phyton-International Journal of Experimental Botany 2022, 91(4), 667-694. https://doi.org/10.32604/phyton.2022.017365

Abstract

Salinity stress is a major threat to global food production and its intensity is continuously increasing because of anthropogenic activities. Wheat is a staple food and a source of carbohydrates and calories for the majority of people across the globe. However, wheat productivity is adversely affected by salt stress, which is associated with a reduction in germination, growth, altered reproductive behavior and enzymatic activity, disrupted photosynthesis, hormonal imbalance, oxidative stress, and yield reductions. Thus, a better understanding of wheat (plant) behavior to salinity stress has essential implications to devise counter and alleviation measures to cope with salt stress. Different approaches including the selection of suitable cultivars, conventional breeding, and molecular techniques can be used for facing salt stress tolerance. However, these techniques are tedious, costly, and labor-intensive. Management practices are still helpful to improve the wheat performance under salinity stress. Use of arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria, and exogenous application of phytohormones, seed priming, and nutrient management are important tools to improve wheat performance under salinity stress. In this paper, we discussed the effect of salinity stress on the wheat crop, possible mechanisms to deal with salinity stress, and management options to improve wheat performance under salinity conditions.

Keywords


Cite This Article

APA Style
Seleiman, M.F., Aslam, M.T., Alhammad, B.A., Hassan, M.U., Maqbool, R. et al. (2022). Salinity stress in wheat: effects, mechanisms and management strategies. Phyton-International Journal of Experimental Botany, 91(4), 667-694. https://doi.org/10.32604/phyton.2022.017365
Vancouver Style
Seleiman MF, Aslam MT, Alhammad BA, Hassan MU, Maqbool R, Chattha MU, et al. Salinity stress in wheat: effects, mechanisms and management strategies. Phyton-Int J Exp Bot. 2022;91(4):667-694 https://doi.org/10.32604/phyton.2022.017365
IEEE Style
M.F. Seleiman et al., "Salinity Stress in Wheat: Effects, Mechanisms and Management Strategies," Phyton-Int. J. Exp. Bot., vol. 91, no. 4, pp. 667-694. 2022. https://doi.org/10.32604/phyton.2022.017365



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 5300

    View

  • 2549

    Download

  • 0

    Like

Share Link