Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (543)
  • Open Access

    ARTICLE

    A C-GAN Denoising Algorithm in Projection Domain for Micro-CT

    Lujie Chen1, Liang Zheng1, Maosen Lian1, Shouhua Luo1,*

    Molecular & Cellular Biomechanics, Vol.17, No.2, pp. 85-92, 2020, DOI:10.32604/mcb.2019.07386

    Abstract Micro-CT provides a high-resolution 3D imaging of micro-architecture in a non-invasive way, which becomes a significant tool in biomedical research and preclinical applications. Due to the limited power of micro-focus X-ray tube, photon starving occurs and noise is inevitable for the projection images, resulting in the degradation of spatial resolution, contrast and image details. In this paper, we propose a C-GAN (Conditional Generative Adversarial Nets) denoising algorithm in projection domain for Micro-CT imaging. The noise statistic property is utilized directly and a novel variance loss is developed to suppress the blurry effects during denoising procedure.… More >

  • Open Access

    ARTICLE

    New Concept to Non-Invasively Screen Iron Deficiency in Patients

    Ali E. Dabiri1,2,*, Erik Samwel3, Ghassan S. Kassab1

    Molecular & Cellular Biomechanics, Vol.17, No.2, pp. 75-83, 2020, DOI:10.32604/mcb.2020.08775

    Abstract Nearly two billion people are afflicted with iron deficiency and approximately 300 million children globally have anemia. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency requires a blood test. It is becoming increasingly important to screen these individuals to reduce medical cost and avoid chronic disease conditions. There are limited settings of laboratory infrastructure for standard blood-based tests around the world to routinely accomplish this important screening test. We propose a new concept to use either human hair or nail as a screening method to… More >

  • Open Access

    ARTICLE

    A Patient-Specific Computational Fluid Dynamic Model of Middle Cerebral Artery Aneurysm Before and One Year After Surgery

    Shicheng He1, Juhui Qiu1, Wanling Liu1, Tieying Yin1, Dechuan Zhang2,*, Donghua Liao3,4, Haijun Zhang5, Yuxia Yin5, Guixue Wang1,*

    Molecular & Cellular Biomechanics, Vol.17, No.2, pp. 63-74, 2020, DOI:10.32604/mcb.2020.08750

    Abstract Computational fluid dynamics (CFD) has been widely used for studying intracranial aneurysm hemodynamics, while its use for guiding clinical strategy is still in development. In this study, CFD simulations helped inform treatment decision for a middle cerebral artery (MCA) aneurysm case was investigated. A patient with a 10.4 × 9.8 mm aneurysm attached with a small aneurysm at the edge of the trifurcation in the left MCA was included in this study. For removing the MCA aneurysm, two scenarios were considered: Plan-A involved clipping the small aneurysm and Plan-B involved clipping the whole aneurysm. A… More >

  • Open Access

    ARTICLE

    A Study on the Finite Element Model for Head Injury in Facial Collision Accident

    Bin Yang1,2,3,*, Hao Sun1, Aiyuan Wang1, Qun Wang2

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 49-62, 2020, DOI:10.32604/mcb.2019.07534

    Abstract In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the headneck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents More >

  • Open Access

    ARTICLE

    A Retrospective Respiratory Gating System Based on Epipolar Consistency Conditions

    Maosen Lian1, Yi Li1, Xiaohui Gu1, Shouhua Luo1,*

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 41-48, 2020, DOI:10.32604/mcb.2019.07383

    Abstract Motion artifacts of in vivo imaging, due to rapid respiration rate and respiration displacements of the mice while free-breathing, is a major challenge in micro computed tomography(micro-CT). The respiratory gating is often served for either projective images acquisition or per projection qualification, so as to eliminate the artifacts brought by in vivo motion. In this paper, we propose a novel respiratory gating method, which firstly divides one rotation cycle into a number of segments, and extracts the respiratory signal from the projective image series of current segment by the value of the epipolar consistency conditions (ECC),… More >

  • Open Access

    ARTICLE

    Multifrequency Microwave Imaging for Brain Stroke Detection

    Lulu Wang1,*

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 33-40, 2020, DOI:10.32604/mcb.2019.07165

    Abstract CT and MRI are often used in the diagnosis and monitoring of stroke. However, they are expensive, time-consuming, produce ionizing radiation (CT), and not suitable for continuous monitoring stroke. Microwave imaging (MI) has been extensively investigated for identifying several types of human organs, including breast, brain, lung, liver, and gastric. The authors recently developed a holographic microwave imaging (HMI) algorithm for biological object detection. However, this method has difficulty in providing accurate information on embedded small inclusions. This paper describes the feasibility of the use of a multifrequency HMI algorithm for brain stroke detection. A More >

  • Open Access

    ARTICLE

    On the Onset of Cracks in Arteries1

    P. Mythravaruni, K.Y. Volokh*

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 1-17, 2020, DOI:10.32604/mcb.2019.07606

    Abstract We present a theoretical approach to study the onset of failure localization into cracks in arterial wall. The arterial wall is a soft composite comprising hydrated ground matrix of proteoglycans reinforced by spatially dispersed elastin and collagen fibers. As any material, the arterial tissue cannot accumulate and dissipate strain energy beyond a critical value. This critical value is enforced in the constitutive theory via energy limiters. The limiters automatically bound reachable stresses and allow examining the mathematical condition of strong ellipticity. Loss of the strong ellipticity physically means inability of material to propagate superimposed waves.… More >

  • Open Access

    ARTICLE

    New Concept in Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA)

    Ali. E. Dabiri1,2,*, Matthew Martin3, Ghassan S. Kassab1

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 25-31, 2020, DOI:10.32604/mcb.2019.07310

    Abstract The world-wide impact of traumatic injury and associated hemorrhage on human health and well-being is significant. Methods to manage bleeding from sites within the torso, referred to as non-compressible torso hemorrhage (NCTH), remain largely limited to the use of conventional operative techniques. The overall mortality rate of patients with NCTH is approximately 50%. Studies from the wars in Afghanistan and Iraq have suggested that up to 80% of potentially survivable patients die as a result of uncontrolled exsanguinating hemorrhage. The commercially available resuscitative endovascular balloon occlusion of the aorta (REBOA) is a percutaneous device… More >

  • Open Access

    ARTICLE

    Kinematic and Dynamic Characteristics of Pulsating Flow in 180o Tube

    Tin-Kan Hung1,*, Ruei-Hung Kuo2, Cheng-Hsien Chiang3

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 19-24, 2020, DOI:10.32604/mcb.2019.07817

    Abstract Kinematic and dynamic characteristics of pulsating flow in a model of human aortic arch are obtained by a computational analysis. Three-dimensional flow processes are summarized by pressure distributions on the symmetric plane together with velocity and pressure contours on a few cross sections for systolic acceleration and deceleration. Without considering the effects of aortic tapering and the carotid arteries, the development of tubular boundary layer with centrifugal forces and pulsation are also analyzed for flow separation and backflow during systolic deceleration. More >

  • Open Access

    ABSTRACT

    Investigation on Energy Characteristic of RBCs Deformability: A Quantitative Analysis of Extending and Retracting Curves Based on AFM

    Dong Chen1, Xiang Wang1,*, Fuzhou Tang2, Yajin Zhao1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 150-150, 2019, DOI:10.32604/mcb.2019.07071

    Abstract Deformability is a fundamental property of the cells and tissues of living organisms, which is commonly detected to indicate the state of the cells. And the cell deformability usually depends on the methods that we used, which is easy to be confused. The present research is designed to explore the energy characteristic of red blood cell deformability, based on a quantitative analysis of extending-retracting curves acquired from atomic force microscopy. ATP-depleted red blood cells are prepared by treatment with free-glucose Ringer solution. Our results clearly show that the Youngs’ modulus of erythrocyte is closely depended… More >

Displaying 61-70 on page 7 of 543. Per Page