Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,827)
  • Open Access

    ARTICLE

    Human Fatty Liver Monitoring Using Nano Sensor and IoMT

    Srilekha Muthukaruppankaruppiah1,*, Shanker Rajendiran Nagalingam2, Priya Murugasen3, Rajesh Nandaamarnath4

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2309-2323, 2023, DOI:10.32604/iasc.2023.029598 - 19 July 2022

    Abstract Malfunction of human liver happens due to non-alcoholic fatty liver. Fatty liver measurement is used for grading hepatic steatosis, fibrosis and cirrhosis. The various imaging techniques for measuring fatty liver are Magnetic Resonance Imaging, Ultrasound and Computed Tomography. Imaging modalities lead to the exposure of harmful radiation of electromagnetic waves because of frequent measurement. The continuous monitoring of fatty liver is never achieved through imaging techniques. In this paper, the human fatty liver measured through a Fatty Liver Sensor (FLS). The continuous monitoring of the fatty liver is achieved through the FLS. FLS is fabricated… More >

  • Open Access

    ARTICLE

    Hybrid Color Texture Features Classification Through ANN for Melanoma

    Saleem Mustafa1, Arfan Jaffar1, Muhammad Waseem Iqbal2,*, Asma Abubakar2, Abdullah S. Alshahrani3, Ahmed Alghamdi4

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2205-2218, 2023, DOI:10.32604/iasc.2023.029549 - 19 July 2022

    Abstract Melanoma is of the lethal and rare types of skin cancer. It is curable at an initial stage and the patient can survive easily. It is very difficult to screen all skin lesion patients due to costly treatment. Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders, pigment networks, and the color of melanoma. These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease. The trained clinicians can overcome the issues such as low contrast, lesions varying in size,… More >

  • Open Access

    ARTICLE

    Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme for Cloud Environment

    R. Rengaraj alias Muralidharan1,*, K. Latha2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1923-1937, 2023, DOI:10.32604/iasc.2023.029495 - 19 July 2022

    Abstract In cloud computing (CC), resources are allocated and offered to the clients transparently in an on-demand way. Failures can happen in CC environment and the cloud resources are adaptable to fluctuations in the performance delivery. Task execution failure becomes common in the CC environment. Therefore, fault-tolerant scheduling techniques in CC environment are essential for handling performance differences, resource fluxes, and failures. Recently, several intelligent scheduling approaches have been developed for scheduling tasks in CC with no consideration of fault tolerant characteristics. With this motivation, this study focuses on the design of Gorilla Troops Optimizer Based… More >

  • Open Access

    ARTICLE

    An Improved Lifetime and Energy Consumption with Enhanced Clustering in WSNs

    I. Adumbabu1,*, K. Selvakumar2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1939-1956, 2023, DOI:10.32604/iasc.2023.029489 - 19 July 2022

    Abstract A wireless sensor network (WSN) is made up of sensor nodes that communicate via radio waves in order to conduct sensing functions. In WSN, the location of the base station is critical. Although base stations are fixed, they may move in response to data received from sensor nodes under specific conditions. Clustering is a highly efficient approach of minimising energy use. The issues of extending the life of WSNs and optimising their energy consumption have been addressed in this paper. It has been established that integrating mobile sinks into wireless sensor networks extends their longevity.… More >

  • Open Access

    ARTICLE

    Germination Quality Prognosis: Classifying Spectroscopic Images of the Seed Samples

    Saud S. Alotaibi*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1815-1829, 2023, DOI:10.32604/iasc.2023.029446 - 19 July 2022

    Abstract One of the most critical objectives of precision farming is to assess the germination quality of seeds. Modern models contribute to this field primarily through the use of artificial intelligence techniques such as machine learning, which present difficulties in feature extraction and optimization, which are critical factors in predicting accuracy with few false alarms, and another significant difficulty is assessing germination quality. Additionally, the majority of these contributions make use of benchmark classification methods that are either inept or too complex to train with the supplied features. This manuscript addressed these issues by introducing a More >

  • Open Access

    ARTICLE

    Strategic Renewable Energy Resource Selection Using a Fuzzy Decision-Making Method

    Anas Quteishat1,2,*, M. A. A. Younis2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2117-2134, 2023, DOI:10.32604/iasc.2023.029419 - 19 July 2022

    Abstract Renewable energy is created by renewable natural resources such as geothermal heat, sunlight, tides, rain, and wind. Energy resources are vital for all countries in terms of their economies and politics. As a result, selecting the optimal option for any country is critical in terms of energy investments. Every country is nowadays planning to increase the share of renewable energy in their universal energy sources as a result of global warming. In the present work, the authors suggest fuzzy multi-characteristic decision-making approaches for renewable energy source selection, and fuzzy set theory is a valuable methodology More >

  • Open Access

    ARTICLE

    Assessing Conscientiousness and Identify Leadership Quality Using Temporal Sequence Images

    T. S. Kanchana*, B. Smitha Evelin Zoraida

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2003-2013, 2023, DOI:10.32604/iasc.2023.029412 - 19 July 2022

    Abstract Human Facial expressions exhibits the inner personality. Evaluating the inner personality is performed through questionnaires during recruitment process. However, the evaluation through questionnaires performs less due to anxiety, and stress during interview and prediction of leadership quality becomes a challenging problem. To the above problem, Temporal sequence based SENet architecture (TSSA) is proposed for accurate evaluation of personality trait for employing the correct person for leadership position. Moreover, SENet is integration with modern architectures for performance evaluation. In Proposed TSSA, face book facial images of a particular person for a period of one month and… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Based PID Controller Design for Unstable System

    Saranya Rajeshwaran1,*, C. Agees Kumar2, Kanthaswamy Ganapathy3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1611-1625, 2023, DOI:10.32604/iasc.2023.029299 - 19 July 2022

    Abstract PID controllers play an important function in determining tuning parameters in any process sector to deliver optimal and resilient performance for nonlinear, stable and unstable processes. The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller. The Direct Multi Search (DMS) algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model. A Metaheuristics Algorithm such as,… More >

  • Open Access

    ARTICLE

    Novel Homomorphic Encryption for Mitigating Impersonation Attack in Fog Computing

    V. Balaji, P. Selvaraj*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2015-2027, 2023, DOI:10.32604/iasc.2023.029260 - 19 July 2022

    Abstract Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers. It facilitates the benefits of the network edge with the maximized probability of offering interaction with the cloud. However, the fog computing characteristics are susceptible to counteract the challenges of security. The issues present with the Physical Layer Security (PLS) aspect in fog computing which included authentication, integrity, and confidentiality has been considered as a reason for the potential issues leading to the security breaches. In this work, the Octonion Algebra-inspired Non- Commutative… More >

  • Open Access

    ARTICLE

    Fault Diagnosis in Robot Manipulators Using SVM and KNN

    D. Maincer1,*, Y. Benmahamed2, M. Mansour1, Mosleh Alharthi3, Sherif S. M. Ghonein3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1957-1969, 2023, DOI:10.32604/iasc.2023.029210 - 19 July 2022

    Abstract In this paper, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) based methods are to be applied on fault diagnosis in a robot manipulator. A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work. For both classifiers, the torque, the position and the speed of the manipulator have been employed as the input vector. However, it is to mention that a large database is needed and used for the training and testing phases. The SVM method used in this paper… More >

Displaying 601-610 on page 61 of 1827. Per Page