Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    PIAFGNN: Property Inference Attacks against Federated Graph Neural Networks

    Jiewen Liu1, Bing Chen1,2,*, Baolu Xue1, Mengya Guo1, Yuntao Xu1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1857-1877, 2025, DOI:10.32604/cmc.2024.057814 - 17 February 2025

    Abstract Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack… More >

  • Open Access

    ARTICLE

    A Fine-Grained Defect Prediction Method Based on Drift-Immune Graph Neural Networks

    Fengyu Yang1,2,*, Fa Zhong2, Xiaohui Wei1, Guangdong Zeng2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3563-3590, 2025, DOI:10.32604/cmc.2024.057697 - 17 February 2025

    Abstract The primary goal of software defect prediction (SDP) is to pinpoint code modules that are likely to contain defects, thereby enabling software quality assurance teams to strategically allocate their resources and manpower. Within-project defect prediction (WPDP) is a widely used method in SDP. Despite various improvements, current methods still face challenges such as coarse-grained prediction and ineffective handling of data drift due to differences in project distribution. To address these issues, we propose a fine-grained SDP method called DIDP (drift-immune defect prediction), based on drift-immune graph neural networks (DI-GNN). DIDP converts source code into graph… More >

  • Open Access

    ARTICLE

    Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks

    Xin Fan1,2, Zhenlei Fu1,2,*, Jian Shu1,2, Zuxiong Shen1,2, Yun Ge1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2583-2607, 2025, DOI:10.32604/cmc.2024.057695 - 17 February 2025

    Abstract Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of… More >

  • Open Access

    ARTICLE

    Retinexformer+: Retinex-Based Dual-Channel Transformer for Low-Light Image Enhancement

    Song Liu1,2, Hongying Zhang1,*, Xue Li1, Xi Yang1,3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1969-1984, 2025, DOI:10.32604/cmc.2024.057662 - 17 February 2025

    Abstract Enhancing low-light images with color distortion and uneven multi-light source distribution presents challenges. Most advanced methods for low-light image enhancement are based on the Retinex model using deep learning. Retinexformer introduces channel self-attention mechanisms in the IG-MSA. However, it fails to effectively capture long-range spatial dependencies, leaving room for improvement. Based on the Retinexformer deep learning framework, we designed the Retinexformer+ network. The “+” signifies our advancements in extracting long-range spatial dependencies. We introduced multi-scale dilated convolutions in illumination estimation to expand the receptive field. These convolutions effectively capture the weakening semantic dependency between pixels… More >

  • Open Access

    ARTICLE

    Masked Face Restoration Model Based on Lightweight GAN

    Yitong Zhou, Tianliang Lu*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3591-3608, 2025, DOI:10.32604/cmc.2024.057554 - 17 February 2025

    Abstract Facial recognition systems have become increasingly significant in public security efforts. They play a crucial role in apprehending criminals and locating missing children and elderly individuals. Nevertheless, in practical applications, around 30% to 50% of images are obstructed to varied extents, for as by the presence of masks, glasses, or hats. Repairing the masked facial images will enhance face recognition accuracy by 10% to 20%. Simultaneously, market research indicates a rising demand for efficient facial recognition technology within the security and surveillance sectors, with projections suggesting that the global facial recognition market would exceed US$3… More >

  • Open Access

    ARTICLE

    MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction

    Xinlu Zong*, Fan Yu, Zhen Chen, Xue Xia

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3517-3537, 2025, DOI:10.32604/cmc.2024.057494 - 17 February 2025

    Abstract Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a More >

  • Open Access

    ARTICLE

    VTAN: A Novel Video Transformer Attention-Based Network for Dynamic Sign Language Recognition

    Ziyang Deng1, Weidong Min1,2,3,*, Qing Han1,2,3, Mengxue Liu1, Longfei Li1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2793-2812, 2025, DOI:10.32604/cmc.2024.057456 - 17 February 2025

    Abstract Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first… More >

  • Open Access

    ARTICLE

    An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem

    Yuting Zhu1,*, Wenyu Zhang1,2, Hainan Wang1, Junjie Hou1, Haining Wang1, Meng Wang1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2177-2198, 2025, DOI:10.32604/cmc.2024.057441 - 17 February 2025

    Abstract Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The… More >

  • Open Access

    REVIEW

    Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis

    Robertas Damasevicius*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1493-1538, 2025, DOI:10.32604/cmc.2024.057431 - 17 February 2025

    Abstract Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering, economics, and computer science. These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions. While heuristic optimization algorithms vary in their specific details, they often exhibit common patterns that are essential to their effectiveness. This paper aims to analyze and explore common patterns in heuristic optimization algorithms. Through a comprehensive review of the literature, we identify the patterns that are commonly observed in these algorithms, including… More >

  • Open Access

    ARTICLE

    ACSF-ED: Adaptive Cross-Scale Fusion Encoder-Decoder for Spatio-Temporal Action Detection

    Wenju Wang1, Zehua Gu1,*, Bang Tang1, Sen Wang2, Jianfei Hao2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2389-2414, 2025, DOI:10.32604/cmc.2024.057392 - 17 February 2025

    Abstract Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A More >

Displaying 1211-1220 on page 122 of 7234. Per Page