Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,294)
  • Open Access

    ARTICLE

    Traffic Vision: UAV-Based Vehicle Detection and Traffic Pattern Analysis via Deep Learning Classifier

    Mohammed Alnusayri1, Ghulam Mujtaba2, Nouf Abdullah Almujally3, Shuoa S. Aitarbi4, Asaad Algarni5, Ahmad Jalal2,6, Jeongmin Park7,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.071804

    Abstract This paper presents a unified Unmanned Aerial Vehicle-based (UAV-based) traffic monitoring framework that integrates vehicle detection, tracking, counting, motion prediction, and classification in a modular and co-optimized pipeline. Unlike prior works that address these tasks in isolation, our approach combines You Only Look Once (YOLO) v10 detection, ByteTrack tracking, optical-flow density estimation, Long Short-Term Memory-based (LSTM-based) trajectory forecasting, and hybrid Speeded-Up Robust Feature (SURF) + Gray-Level Co-occurrence Matrix (GLCM) feature engineering with VGG16 classification. Upon the validation across datasets (UAVDT and UAVID) our framework achieved a detection accuracy of 94.2%, and 92.3% detection accuracy when More >

  • Open Access

    ARTICLE

    Porosity-Impact Strength Relationship in Material Extrusion: Insights from MicroCT, and Computational Image Analysis

    Jia Yan Lim1,2, Siti Madiha Muhammad Amir3, Roslan Yahya3, Marta Peña Fernández2, Tze Chuen Yap1,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.070707

    Abstract Additive Manufacturing, also known as 3D printing, has transformed conventional manufacturing by building objects layer by layer, with material extrusion or fused deposition modeling standing out as particularly popular. However, due to its manufacturing process and thermal nature, internal voids and pores are formed within the thermoplastic materials being fabricated, potentially leading to a decrease in mechanical properties. This paper discussed the effect of printing parameters on the porosity and the mechanical properties of the 3D printed polylactic acid (PLA) through micro-computed tomography (microCT), computational image analysis, and Charpy impact testing. The results for both… More >

  • Open Access

    ARTICLE

    HDFPM: A Heterogeneous Disk Failure Prediction Method Based on Time Series Features

    Zhongrui Jing1, Hongzhang Yang1,*, Jiangpu Guo2

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.067759

    Abstract Hard disk drives (HDDs) serve as the primary storage devices in modern data centers. Once a failure occurs, it often leads to severe data loss, significantly degrading the reliability of storage systems. Numerous studies have proposed machine learning-based HDD failure prediction models. However, the Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes differ across HDD manufacturers. We define hard drives of the same brand and model as homogeneous HDD groups, and those from different brands or models as heterogeneous HDD groups. In practical engineering scenarios, a data center is often composed of a heterogeneous population of… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Personnel Detection in Substations via Federated Learning with Dynamic Noise Adaptation

    Yuewei Tian1, Yang Su2, Yujia Wang1, Lisa Guo1, Xuyang Wu3,*, Lei Cao4, Fang Ren3

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072081

    Abstract This study addresses the risk of privacy leakage during the transmission and sharing of multimodal data in smart grid substations by proposing a three-tier privacy-preserving architecture based on asynchronous federated learning. The framework integrates blockchain technology, the InterPlanetary File System (IPFS) for distributed storage, and a dynamic differential privacy mechanism to achieve collaborative security across the storage, service, and federated coordination layers. It accommodates both multimodal data classification and object detection tasks, enabling the identification and localization of key targets and abnormal behaviors in substation scenarios while ensuring privacy protection. This effectively mitigates the single-point… More >

  • Open Access

    REVIEW

    Artificial Intelligence Design of Sustainable Aluminum Alloys: A Review

    Zhijie Lin1, Chao Yang1,2,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.070735

    Abstract Sustainable aluminum alloys, renowned for their lower energy consumption and carbon emissions, present a critical path towards a circular materials economy. However, their design is fraught with challenges, including complex performance variability due to impurity elements and the time-consuming, cost-prohibitive nature of traditional trial-and-error methods. The high-dimensional parameter space in processing optimization and the reliance on human expertise for quality control further complicate their development. This paper provides a comprehensive review of Artificial Intelligence (AI) techniques applied to sustainable aluminum alloy design, analyzing their methodologies and identifying key challenges and optimization strategies. We review how… More >

  • Open Access

    REVIEW

    Transforming Healthcare with State-of-the-Art Medical-LLMs: A Comprehensive Evaluation of Current Advances Using Benchmarking Framework

    Himadri Nath Saha1, Dipanwita Chakraborty Bhattacharya2,*, Sancharita Dutta3, Arnab Bera3, Srutorshi Basuray4, Satyasaran Changdar5, Saptarshi Banerjee6, Jon Turdiev7

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.070507

    Abstract The emergence of Medical Large Language Models has significantly transformed healthcare. Medical Large Language Models (Med-LLMs) serve as transformative tools that enhance clinical practice through applications in decision support, documentation, and diagnostics. This evaluation examines the performance of leading Med-LLMs, including GPT-4Med, Med-PaLM, MEDITRON, PubMedGPT, and MedAlpaca, across diverse medical datasets. It provides graphical comparisons of their effectiveness in distinct healthcare domains. The study introduces a domain-specific categorization system that aligns these models with optimal applications in clinical decision-making, documentation, drug discovery, research, patient interaction, and public health. The paper addresses deployment challenges of Medical-LLMs, More >

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.070858

    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    REVIEW

    Implementation of Human-AI Interaction in Reinforcement Learning: Literature Review and Case Studies

    Shaoping Xiao1,*, Zhaoan Wang1, Junchao Li2, Caden Noeller1, Jiefeng Jiang3, Jun Wang4

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072146

    Abstract The integration of human factors into artificial intelligence (AI) systems has emerged as a critical research frontier, particularly in reinforcement learning (RL), where human-AI interaction (HAII) presents both opportunities and challenges. As RL continues to demonstrate remarkable success in model-free and partially observable environments, its real-world deployment increasingly requires effective collaboration with human operators and stakeholders. This article systematically examines HAII techniques in RL through both theoretical analysis and practical case studies. We establish a conceptual framework built upon three fundamental pillars of effective human-AI collaboration: computational trust modeling, system usability, and decision understandability. Our… More >

  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Blades Based on Multi-Sensor Weighted Alignment Fusion in Noisy Environments

    Lifu He1, Zhongchu Huang1, Haidong Shao2,*, Zhangbo Hu1, Yuting Wang1, Jie Mei1, Xiaofei Zhang3

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073227

    Abstract Deep learning-based wind turbine blade fault diagnosis has been widely applied due to its advantages in end-to-end feature extraction. However, several challenges remain. First, signal noise collected during blade operation masks fault features, severely impairing the fault diagnosis performance of deep learning models. Second, current blade fault diagnosis often relies on single-sensor data, resulting in limited monitoring dimensions and ability to comprehensively capture complex fault states. To address these issues, a multi-sensor fusion-based wind turbine blade fault diagnosis method is proposed. Specifically, a CNN-Transformer Coupled Feature Learning Architecture is constructed to enhance the ability to More >

  • Open Access

    ARTICLE

    A Micromechanics-Based Softening Hyperelastic Model for Granular Materials: Multiscale Insights into Strain Localization and Softening

    Chenxi Xiu1,2,*, Xihua Chu2, Ao Mei1, Liangfei Gong1

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073193

    Abstract Granular materials exhibit complex macroscopic mechanical behaviors closely related to their micro-scale microstructural features. Traditional macroscopic phenomenological elasto-plastic models, however, usually have complex formulations and lack explicit relations to these microstructural features. To avoid these limitations, this study proposes a micromechanics-based softening hyperelastic model for granular materials, integrating softening hyperelasticity with microstructural insights to capture strain softening, critical state, and strain localization behaviors. The model has two key advantages: (1) a clear conceptualization, straightforward formulation, and ease of numerical implementation (via Abaqus UMAT subroutine in this study); (2) explicit incorporation of micro-scale features (e.g., contact… More >

Displaying 251-260 on page 26 of 2294. Per Page