Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    Adversarial Defense Technology for Small Infrared Targets

    Tongan Yu1, Yali Xue1,*, Yiming He1, Shan Cui2, Jun Hong2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1235-1250, 2024, DOI:10.32604/cmc.2024.056075 - 15 October 2024

    Abstract With the rapid development of deep learning-based detection algorithms, deep learning is widely used in the field of infrared small target detection. However, well-designed adversarial samples can fool human visual perception, directly causing a serious decline in the detection quality of the recognition model. In this paper, an adversarial defense technology for small infrared targets is proposed to improve model robustness. The adversarial samples with strong migration can not only improve the generalization of defense technology, but also save the training cost. Therefore, this study adopts the concept of maximizing multidimensional feature distortion, applying noise… More >

  • Open Access

    ARTICLE

    Multiscale Feature Fusion for Gesture Recognition Using Commodity Millimeter-Wave Radar

    Lingsheng Li1, Weiqing Bai2, Chong Han2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1613-1640, 2024, DOI:10.32604/cmc.2024.056073 - 15 October 2024

    Abstract Gestures are one of the most natural and intuitive approach for human-computer interaction. Compared with traditional camera-based or wearable sensors-based solutions, gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free, privacy-preserving and less environment-dependence. Although there have been many recent studies on hand gesture recognition, the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in short-range applications. In this paper, we present a hand gesture recognition method named multiscale feature fusion (MSFF) to accurately identify micro hand gestures. In MSFF, not only the More >

  • Open Access

    ARTICLE

    Stroke Electroencephalogram Data Synthesizing through Progressive Efficient Self-Attention Generative Adversarial Network

    Suzhe Wang*, Xueying Zhang, Fenglian Li, Zelin Wu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1177-1196, 2024, DOI:10.32604/cmc.2024.056016 - 15 October 2024

    Abstract Early and timely diagnosis of stroke is critical for effective treatment, and the electroencephalogram (EEG) offers a low-cost, non-invasive solution. However, the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning. To address this issue, our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention (PCGAN-EASA), which incrementally improves the quality of generated EEG features. This network can yield full-scale, fine-grained EEG features from the low-scale, coarse ones. Specially, to overcome the limitations of traditional generative models… More >

  • Open Access

    ARTICLE

    Research on Fine-Grained Recognition Method for Sensitive Information in Social Networks Based on CLIP

    Menghan Zhang1,2, Fangfang Shan1,2,*, Mengyao Liu1,2, Zhenyu Wang1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1565-1580, 2024, DOI:10.32604/cmc.2024.056008 - 15 October 2024

    Abstract With the emergence and development of social networks, people can stay in touch with friends, family, and colleagues more quickly and conveniently, regardless of their location. This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy. Due to the complexity and subtlety of sensitive information, traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data, thus weakening the deep connections between text and images. In this context, this paper adopts the CLIP model as a modality discriminator. By using comparative learning between sensitive image descriptions and… More >

  • Open Access

    ARTICLE

    Leveraging Sharding-Based Hybrid Consensus for Blockchain

    Hind Baageel1, Md Mahfuzur Rahman1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1215-1233, 2024, DOI:10.32604/cmc.2024.055908 - 15 October 2024

    Abstract The advent of blockchain technology has transformed traditional methods of information exchange, shifting reliance from centralized data centers to decentralized frameworks. While blockchain’s decentralization and security are strengths, traditional consensus mechanisms like Proof of Work (PoW) and Proof of Stake (PoS) face limitations in scalability. PoW achieves decentralization and security but struggles with scalability as transaction volumes grow, while PoS enhances scalability, but risks centralization due to monopolization by high-stake participants. Sharding, a recent advancement in blockchain technology, addresses scalability by partitioning the network into shards that process transactions independently, thereby improving throughput and reducing… More >

  • Open Access

    ARTICLE

    ResMHA-Net: Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework

    Novsheena Rasool1,*, Javaid Iqbal Bhat1, Najib Ben Aoun2,3, Abdullah Alharthi4, Niyaz Ahmad Wani5, Vikram Chopra6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 885-909, 2024, DOI:10.32604/cmc.2024.055900 - 15 October 2024

    Abstract Gliomas are aggressive brain tumors known for their heterogeneity, unclear borders, and diverse locations on Magnetic Resonance Imaging (MRI) scans. These factors present significant challenges for MRI-based segmentation, a crucial step for effective treatment planning and monitoring of glioma progression. This study proposes a novel deep learning framework, ResNet Multi-Head Attention U-Net (ResMHA-Net), to address these challenges and enhance glioma segmentation accuracy. ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms. This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture… More >

  • Open Access

    ARTICLE

    Industrial Fusion Cascade Detection of Solder Joint

    Chunyuan Li1,2,3, Peng Zhang1,2,3, Shuangming Wang4, Lie Liu4, Mingquan Shi2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1197-1214, 2024, DOI:10.32604/cmc.2024.055893 - 15 October 2024

    Abstract With the remarkable advancements in machine vision research and its ever-expanding applications, scholars have increasingly focused on harnessing various vision methodologies within the industrial realm. Specifically, detecting vehicle floor welding points poses unique challenges, including high operational costs and limited portability in practical settings. To address these challenges, this paper innovatively integrates template matching and the Faster RCNN algorithm, presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques. This algorithm meticulously weights and fuses the optimized features of both methodologies, enhancing the overall detection capabilities. Furthermore,… More >

  • Open Access

    ARTICLE

    Path Planning of Multi-Axis Robotic Arm Based on Improved RRT*

    Juanling Liang1, Wenguang Luo1,2,*, Yongxin Qin1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1009-1027, 2024, DOI:10.32604/cmc.2024.055883 - 15 October 2024

    Abstract An improved RRT* algorithm, referred to as the AGP-RRT* algorithm, is proposed to address the problems of poor directionality, long generated paths, and slow convergence speed in multi-axis robotic arm path planning. First, an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency. Second, a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to… More >

  • Open Access

    ARTICLE

    Continual Reinforcement Learning for Intelligent Agricultural Management under Climate Changes

    Zhaoan Wang1, Kishlay Jha2, Shaoping Xiao1,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1319-1336, 2024, DOI:10.32604/cmc.2024.055809 - 15 October 2024

    Abstract Climate change poses significant challenges to agricultural management, particularly in adapting to extreme weather conditions that impact agricultural production. Existing works with traditional Reinforcement Learning (RL) methods often falter under such extreme conditions. To address this challenge, our study introduces a novel approach by integrating Continual Learning (CL) with RL to form Continual Reinforcement Learning (CRL), enhancing the adaptability of agricultural management strategies. Leveraging the Gym-DSSAT simulation environment, our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions. By incorporating CL algorithms, such as Elastic Weight Consolidation (EWC), with established… More >

  • Open Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024

    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

Displaying 1431-1440 on page 144 of 7234. Per Page