Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    Curve Classification Based on Mean-Variance Feature Weighting and Its Application

    Zewen Zhang1, Sheng Zhou1, Chunzheng Cao1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2465-2480, 2024, DOI:10.32604/cmc.2024.049605 - 15 May 2024

    Abstract The classification of functional data has drawn much attention in recent years. The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy. In this paper, we propose a mean-variance-based (MV) feature weighting method for classifying functional data or functional curves. In the feature extraction stage, each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis. After that, a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the… More >

  • Open Access

    ARTICLE

    Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network

    Arnab Dey1,*, Samit Biswas1, Dac-Nhuong Le2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3067-3087, 2024, DOI:10.32604/cmc.2024.049512 - 15 May 2024

    Abstract Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers the likelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in video streams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enable instant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing action datasets often lack diversity and specificity for workout actions, hindering the development of accurate recognition models. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significant… More >

  • Open Access

    ARTICLE

    CMAES-WFD: Adversarial Website Fingerprinting Defense Based on Covariance Matrix Adaptation Evolution Strategy

    Di Wang, Yuefei Zhu, Jinlong Fei*, Maohua Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2253-2276, 2024, DOI:10.32604/cmc.2024.049504 - 15 May 2024

    Abstract Website fingerprinting, also known as WF, is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination, even when using the Tor anonymity network. While advanced attacks based on deep neural network (DNN) can perform feature engineering and attain accuracy rates of over 98%, research has demonstrated that DNN is vulnerable to adversarial samples. As a result, many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success. However, these methods suffer from high bandwidth overhead or require access to the target… More >

  • Open Access

    ARTICLE

    A Cooperated Imperialist Competitive Algorithm for Unrelated Parallel Batch Machine Scheduling Problem

    Deming Lei*, Heen Li

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1855-1874, 2024, DOI:10.32604/cmc.2024.049480 - 15 May 2024

    Abstract This study focuses on the scheduling problem of unrelated parallel batch processing machines (BPM) with release times, a scenario derived from the moulding process in a foundry. In this process, a batch is initially formed, placed in a sandbox, and then the sandbox is positioned on a BPM for moulding. The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume. To minimize the makespan, a new cooperated imperialist competitive algorithm (CICA) is introduced. In CICA, the number of empires is not a parameter, and four empires are maintained More >

  • Open Access

    ARTICLE

    Low-Brightness Object Recognition Based on Deep Learning

    Shu-Yin Chiang*, Ting-Yu Lin

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1757-1773, 2024, DOI:10.32604/cmc.2024.049477 - 15 May 2024

    Abstract This research focuses on addressing the challenges associated with image detection in low-light environments, particularly by applying artificial intelligence techniques to machine vision and object recognition systems. The primary goal is to tackle issues related to recognizing objects with low brightness levels. In this study, the Intel RealSense Lidar Camera L515 is used to simultaneously capture color information and 16-bit depth information images. The detection scenarios are categorized into normal brightness and low brightness situations. When the system determines a normal brightness environment, normal brightness images are recognized using deep learning methods. In low-brightness situations,… More >

  • Open Access

    ARTICLE

    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410 - 15 May 2024

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing… More >

  • Open Access

    ARTICLE

    Hyperspectral Image Based Interpretable Feature Clustering Algorithm

    Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2151-2168, 2024, DOI:10.32604/cmc.2024.049360 - 15 May 2024

    Abstract Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral… More >

  • Open Access

    ARTICLE

    Blood Pressure Estimation with Phonocardiogram on CNN-Based Approach

    Kasidit Kokkhunthod1, Khomdet Phapatanaburi2, Wongsathon Pathonsuwan1, Talit Jumphoo1, Patikorn Anchuen3, Porntip Nimkuntod4, Monthippa Uthansakul1, Peerapong Uthansakul1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1775-1794, 2024, DOI:10.32604/cmc.2024.049276 - 15 May 2024

    Abstract Monitoring blood pressure is a critical aspect of safeguarding an individual’s health, as early detection of abnormal blood pressure levels facilitates timely medical intervention, ultimately leading to a reduction in mortality rates associated with cardiovascular diseases. Consequently, the development of a robust and continuous blood pressure monitoring system holds paramount significance. In the context of this research paper, we introduce an innovative deep learning regression model that harnesses phonocardiogram (PCG) data to achieve precise blood pressure estimation. Our novel approach incorporates a convolutional neural network (CNN)-based regression model, which not only enhances its adaptability to… More >

  • Open Access

    ARTICLE

    Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks (MANETS)

    Ahmed Alhussen1, Arshiya S. Ansari2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1903-1923, 2024, DOI:10.32604/cmc.2024.049260 - 15 May 2024

    Abstract Traffic in today’s cities is a serious problem that increases travel times, negatively affects the environment, and drains financial resources. This study presents an Artificial Intelligence (AI) augmented Mobile Ad Hoc Networks (MANETs) based real-time prediction paradigm for urban traffic challenges. MANETs are wireless networks that are based on mobile devices and may self-organize. The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts. This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN) technique to assess real-time data… More >

  • Open Access

    ARTICLE

    Predicting Age and Gender in Author Profiling: A Multi-Feature Exploration

    Aiman1, Muhammad Arshad1,*, Bilal Khan1, Sadique Ahmad2,*, Muhammad Asim2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3333-3353, 2024, DOI:10.32604/cmc.2024.049254 - 15 May 2024

    Abstract Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personal information, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic, semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, and marketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French, etc. However, the research on Roman Urdu is not up to the mark. Hence, this study focuses on detecting the author’s age and gender based on Roman Urdu text messages.… More >

Displaying 1831-1840 on page 184 of 7234. Per Page