Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (886)
  • Open Access

    ARTICLE

    Enhanced Efficiency of Solar-Assist Heat Pump Using Tracking PV/T Panel: A TRNSYS Simulation Study

    Ashna Abduljabbar Haji*, Ranj S. Abdullah*

    Energy Engineering, Vol.122, No.12, pp. 5111-5127, 2025, DOI:10.32604/ee.2025.073367 - 27 November 2025

    Abstract The hybrid photovoltaic solar-assisted heat pump are primarily used to generate electricity and provide thermal energy for heating applications. This study investigates the performance enhancement of a hybrid Photovoltaic Thermal Solar-Assisted Heat Pump (PV/T-SAHP) system integrated with a solar tracking mechanism. The system was simulated using TRNSYS to evaluate its monthly electrical output and coefficient of performance (COP) of the heat pump system over a year. The results showed a significant improvement in energy generation and efficiency compared to a conventional PV/T system without SAHP system. Overall, the solar tracking configuration of the PV/T-SAHP generated… More > Graphic Abstract

    Enhanced Efficiency of Solar-Assist Heat Pump Using Tracking PV/T Panel: A TRNSYS Simulation Study

  • Open Access

    ARTICLE

    Experimental and Neural Network Modeling of the Thermal Behavior of an Agricultural Greenhouse Integrated with a Phase Change Material (CaCl2·6H2O)

    Abdelouahab Benseddik1,*, Djamel Daoud1, Ahmed Badji1,2, Hocine Bensaha1, Tarik Hadibi3,5, Yunfeng Wang4, Li Ming4

    Energy Engineering, Vol.122, No.12, pp. 5021-5037, 2025, DOI:10.32604/ee.2025.072991 - 27 November 2025

    Abstract In Saharan climates, greenhouses face extreme diurnal temperature fluctuations that generate thermal stress, reduce crop productivity, and hinder sustainable agricultural practices. Passive thermal storage using Phase Change Materials (PCM) is a promising solution to stabilize microclimatic conditions. This study aims to evaluate experimentally and numerically the effectiveness of PCM integration for moderating greenhouse temperature fluctuations under Saharan climatic conditions. Two identical greenhouse prototypes were constructed in Ghardaïa, Algeria: a reference greenhouse and a PCM-integrated greenhouse using calcium chloride hexahydrate (CaCl2·6H2O). Thermal performance was assessed during a five-day experimental period (7–11 May 2025) under severe ambient conditions.… More > Graphic Abstract

    Experimental and Neural Network Modeling of the Thermal Behavior of an Agricultural Greenhouse Integrated with a Phase Change Material (CaCl<sub><b>2</b></sub>·6H<sub><b>2</b></sub>O)

  • Open Access

    ARTICLE

    Feasibility of Micro-Hydro Power for Rural Electrification in Bangladesh: A Case Study from the Chittagong Hill Tracts

    Ratan Kumar Das1,*, Abhijit Date1, Harun Chowdhury1, Hamed Hassan2

    Energy Engineering, Vol.122, No.12, pp. 4815-4835, 2025, DOI:10.32604/ee.2025.071727 - 27 November 2025

    Abstract Bangladesh has achieved notable progress in expanding electricity access nationwide. Nonetheless, remote and topographically challenging regions such as the Chittagong Hill Tracts (CHT) continue to face coverage gaps due to grid extension difficulties. This research investigates the technical feasibility of micro-hydro power (MHP) systems as viable off-grid solutions for rural electrification in CHT. Field surveys conducted across various sites assessed available head and flow rates using GPS-based elevation measurements and portable flow meters. Seasonal fluctuations were factored into the analysis to ensure year-round operational viability. The study involved estimating power output, selecting appropriate turbine types… More > Graphic Abstract

    Feasibility of Micro-Hydro Power for Rural Electrification in Bangladesh: A Case Study from the Chittagong Hill Tracts

  • Open Access

    ARTICLE

    Comparison of Objective Forecasting Method Fit with Electrical Consumption Characteristics in Timor-Leste

    Ricardo Dominico Da Silva1,2, Jangkung Raharjo1,3,*, Sudarmono Sasmono1,3

    Energy Engineering, Vol.122, No.12, pp. 5073-5090, 2025, DOI:10.32604/ee.2025.071545 - 27 November 2025

    Abstract The rapid development of technology has led to an ever-increasing demand for electrical energy. In the context of Timor-Leste, which still relies on fossil energy sources with high operational costs and significant environmental impacts, electricity load forecasting is a strategic measure to support the energy transition towards the Net Zero Emission (NZE) target by 2050. This study aims to utilize historical electricity load data for the period 2013–2024, as well as data on external factors affecting electricity consumption, to forecast electricity load in Timor-Leste in the next 10 years (2025–2035). The forecasting results are expected… More >

  • Open Access

    ARTICLE

    A Non-Intrusive Spiral Coil Heat Exchanger for Waste Heat Recovery from HVAC Units: Experimental and Thermal Performance Analysis

    S. Srinivasa senthil, K. Vijayakumar*

    Energy Engineering, Vol.122, No.12, pp. 5149-5173, 2025, DOI:10.32604/ee.2025.070889 - 27 November 2025

    Abstract Heating, ventilation, and air conditioning (HVAC) systems contribute substantially to global energy consumption, while rejecting significant amounts of low-grade heat into the environment. This paper presents a non-intrusive spiral-coil heat exchanger designed to recover waste heat from the outdoor condenser of a split-type air conditioner. The system operates externally without altering the existing HVAC configuration, thereby rendering it suitable for retrofitting. Water was circulated as the working fluid at flow rates of 0.028–0.052 kg/s to assess thermal performance. Performance indicators, including the outlet water temperature, heat transfer rate, convective coefficient, and efficiency, were systematically evaluated.… More >

  • Open Access

    ARTICLE

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

    Rebhi M’hamed1,*, Himri Youcef2,3,*, Bouchiba Bousmaha1, Yaichi Mouaadh1

    Energy Engineering, Vol.122, No.12, pp. 4899-4918, 2025, DOI:10.32604/ee.2025.070806 - 27 November 2025

    Abstract Currently, most conventional street lighting systems use a constant light mode throughout the entire night, from sunset to sunrise, which results in high energy consumption and maintenance costs. Furthermore, scientific research predicts that energy consumption for street lighting will increase in the coming years due to growing demand and rising electricity prices. The dimming strategy is a current trend and a key concept in smart street lighting systems. It involves turning on the road lights only when a vehicle or pedestrian is detected; otherwise, the control system reduces the light intensity of the lamps. Power… More >

  • Open Access

    ARTICLE

    Exploring Efficiency of Silicon Carbide for Next Generation of Alkali & Alkaline Earth Metals-Ion Batteries Using Quantum Mechanic Method

    Fatemeh Mollaamin1,*, Majid Monajjemi2

    Energy Engineering, Vol.122, No.12, pp. 4971-4986, 2025, DOI:10.32604/ee.2025.069945 - 27 November 2025

    Abstract Delving alternative high-performance anodes for lithium-ion batteries have always attracted scientist attention. A wide-bandgap semiconductor with excellent mechanical properties, “silicon carbide (SiC)”, has been introduced as the anode electrode. Two-dimensional SiC has special hybridization which can build it as an appropriate substitution for graphene. Energy storage technologies are keys in the extension and function of electric devices. To keep up with steady innovations in saving energy technologies, it is essential to progress corresponding practical strategies. In this research article, SiC has been designed and characterized as an anode electrode for lithium (Li), sodium (Na), beryllium… More > Graphic Abstract

    Exploring Efficiency of Silicon Carbide for Next Generation of Alkali & Alkaline Earth Metals-Ion Batteries Using Quantum Mechanic Method

  • Open Access

    ARTICLE

    CFD Analysis of Corrugated Plate Designs to Improve Heat Transfer Efficiency in Plate Heat Exchangers

    Kashif Ahmed Soomro1,2,3,*, Rahool Rai1,3,4, S. R. Qureshi2, Sudhakar Kumarasamy4,5,6, Abdul Hameed Memon1, Rabiya Jamil1

    Energy Engineering, Vol.122, No.12, pp. 4857-4872, 2025, DOI:10.32604/ee.2025.069847 - 27 November 2025

    Abstract Plate heat exchangers suffer from significant energy losses, which adversely affect the overall efficiency of thermal systems. To address this challenge, various heat transfer enhancement techniques have been investigated. Notably, the incorporation of surface corrugations is widely recognized as both effective and practical. Chevron corrugation is the most employed design. However, there remains a need to investigate alternative geometries that may offer superior performance. This study aims to find a novel corrugation design by conducting a comparative CFD analysis of flat, square, chevron, and cylindrical corrugated surfaces, assessing their impact on heat transfer enhancement within… More > Graphic Abstract

    CFD Analysis of Corrugated Plate Designs to Improve Heat Transfer Efficiency in Plate Heat Exchangers

  • Open Access

    REVIEW

    Innovative Research on the Interconnection of C-V2X Technology and Hydrogen Refueling Stations

    Wang Gu1, Yuanyuan Song2, Zhihu Zhang3, Minggang Zheng1,*

    Energy Engineering, Vol.122, No.12, pp. 4837-4856, 2025, DOI:10.32604/ee.2025.069529 - 27 November 2025

    Abstract Driven by the global “dual-carbon” goals, hydrogen fuel cell electric vehicles (FCEVs) are being rapidly promoted as a zero-emission transportation solution. However, their large-scale application is constrained by issues such as inefficient operation, poor information flow between vehicles and stations, and potential safety hazards, which are caused by insufficient intelligence of hydrogen refueling stations. This study aims to address these problems by deeply integrating Cellular Vehicle-to-Everything (C-V2X) technology with hydrogen refueling stations, thereby building a safe, efficient, and low-carbon hydrogen energy application ecosystem to promote the global transition to zero-carbon transportation. Firstly, through literature review… More >

  • Open Access

    ARTICLE

    Decoupling and Driving Forces in Economic Growth, Energy Consumption, and Carbon Emissions: Evidence from China’s BTH Region

    Hao Yue1, Di Gao2, Jin Gao1, Chengmei Wei1, Jiali Duan3, Shaocheng Mei3,*

    Energy Engineering, Vol.122, No.12, pp. 5091-5109, 2025, DOI:10.32604/ee.2025.069140 - 27 November 2025

    Abstract Against the backdrop of regional coordinated development and China’s “dual carbon” strategic objectives, the Beijing-Tianjin-Hebei (BTH) region faces an urgent need to transition from its traditional economic growth model, which is heavily reliant on resource consumption. This study investigates the decoupling dynamics among economic growth, energy consumption, and carbon emissions in the BTH region, along with the underlying driving forces, aiming to provide valuable insights for achieving the “dual carbon” targets and fostering high-quality regional development. First, the Tapio decoupling model is employed to analyze the decoupling relationships between economic growth, energy consumption, and carbon… More >

Displaying 1-10 on page 1 of 886. Per Page