Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (178)
  • Open Access

    ARTICLE

    Direct Production of Sorbitol-Plasticized Bioplastic Film from Gracilaria sp.

    Ahmad Faldo1, Labanta Marbun1, Hezekiah Lemuel Putra Zebua1, Fateha Fateha2, Rossy Choerun Nissa2, Yurin Karunia Apsha Albaina Iasya3, Riri Uswatun Annifah3, Amrul Amrul1, Yeyen Nurhamiyah2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 743-755, 2025, DOI:10.32604/jpm.2025.069981 - 30 September 2025

    Abstract Conventional bioplastic production from seaweed often relies on extraction processes that are costly, time-consuming, and yield limited product. This study presents a direct fabrication method using Gracilaria sp., a red seaweed rich in polysaccharides, to produce bioplastic films without the need for extraction. Sorbitol was incorporated as a plasticizer at concentrations of 0%–10% (w/w) to modify film characteristics. Thermal analysis revealed improved stability at moderate sorbitol levels (5%–7%), while excessive plasticizer slightly reduced thermal resistance. Mechanical testing showed that sorbitol increased film flexibility and elongation at break, though tensile strength and stiffness declined. Tear strength followed More >

  • Open Access

    ARTICLE

    Application of a Hyperbranched Amide Polymer in High-Temperature Drilling Fluids: Inhibiting Barite Sag and Action Mechanisms

    Qiang Sun1,2,*, Zheng-Song Qiu1, Tie Geng2, Han-Yi Zhong1, Weili Liu2, Yu-Lin Tang2, Jin-Cheng Dong2

    Journal of Polymer Materials, Vol.42, No.3, pp. 757-772, 2025, DOI:10.32604/jpm.2025.069808 - 30 September 2025

    Abstract Addressing the critical challenges of viscosity loss and barite sag in synthetic-based drilling fluids (SBDFs) under high-temperature, high-pressure (HTHP) conditions, this study innovatively developed a hyperbranched amide polymer (SS-1) through a unique stepwise polycondensation strategy. By integrating dynamic ionic crosslinking for temperature-responsive rheology and rigid aromatic moieties ensuring thermal stability beyond 260°C, SS-1 achieves a molecular-level breakthrough. Performance evaluations demonstrate that adding merely 2.0 wt% SS-1 significantly enhances key properties of 210°C-aged SBDFs: plastic viscosity rises to 45 mPa·s, electrical stability (emulsion voltage) reaches 1426 V, and the sag factor declines to 0.509, outperforming conventional More >

  • Open Access

    ARTICLE

    Prediction and Validation of Mechanical Properties of Areca catechu/Tamarindus indica Fruit Fiber with Nano Coconut Shell Powder Reinforced Hybrid Composites

    Jeyapaul Angel Ida Chellam1, Bright Brailson Mansingh2, Daniel Stalin Alex3, Joseph Selvi Binoj4,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 773-794, 2025, DOI:10.32604/jpm.2025.069295 - 30 September 2025

    Abstract Machine learning models can predict material properties quickly and accurately at a low computational cost. This study generated novel hybridized nanocomposites with unsaturated polyester resin as the matrix and Areca fruit husk fiber (AFHF), tamarind fruit fiber (TFF), and nano-sized coconut shell powder (NCSP). It is challenging to determine the optimal proportion of raw materials in this composite to achieve maximum mechanical properties. This task was accomplished with the help of ML techniques in this study. The tensile strength of the hybridized nanocomposite was increased by 134.06% compared to the neat unsaturated polyester resin at… More >

  • Open Access

    ARTICLE

    Influence of LiCF3SO3 on the Conductivity and Other Characteristics of Methylcellulose/PVA Blend-Based Electrolytes

    Nurrul Asyiqin Shamsuri1, Zamil Khairuddin2, Muhamad Hafiz Hamsan3, Norhana Abdul Halim4, Mohd Fakhrul Zamani Kadir1,5, Muhammad Fadhlullah Shukur6,7,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 729-742, 2025, DOI:10.32604/jpm.2025.069060 - 30 September 2025

    Abstract Polymeric materials have emerged as a promising alternative to electrolytic solutions in energy storage applications. However, high crystallinity and poor ionic conductivity are the main barriers restricting their daily application. In this study, we propose a polymer electrolyte system consisting of methylcellulose-polyvinyl alcohol (MC-PVA) blend as host material and lithium trifluoromethanesulfonate (LiCF3SO3) as dopant, which was prepared using the solution-casting method. The electrochemical impedance spectroscopy (EIS) analysis revealed a maximum conductivity of 5.42 × 10−6 S cm−1 with 40 wt.% LiCF3SO3. The key findings demonstrated that the variation in the dielectric loss (εi) and dielectric constant (εr) was… More >

  • Open Access

    REVIEW

    Design Principles of Ultrathin Polymer-Based Electrolyte for Lithium-Metal Batteries

    Xinyuan Shan1,2, Yuan Wei1, Jiayao Chen1,*, Peng-Fei Cao1,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 571-586, 2025, DOI:10.32604/jpm.2025.068907 - 30 September 2025

    Abstract In recent years, ultrathin polymer-based electrolytes (UPEs) have emerged as a promising strategy to enhance the energy density of rechargeable batteries for wearable devices by minimizing electrolyte volume, demonstrating higher ionic conductance and lower internal resistance, and more compact battery stacking compared to conventional thick polymer-based electrolyte. This mini review systematically summarizes recent advances in ultrathin solid-state and gel-state electrolytes, focusing on their preparation strategies, advantages, and disadvantages, where the energy density, interfacial stability, mechanical properties, and ion-transport mechanisms are also analyzed for understanding the UPE application. Moreover, the challenges such as dendrite penetration and More >

  • Open Access

    REVIEW

    A Comprehensive Study on Application and Prospect of Hydrogel Detection Methods

    Caixia Chen1, Pengyu Liu1, Changhua Wang1, Yanyan Xie1, Wei Wang1,*, Xiaomin Kang2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 621-660, 2025, DOI:10.32604/jpm.2025.068852 - 30 September 2025

    Abstract Due to their high water content, stimulus responsiveness, and biocompatibility, hydrogels, which are functional materials with a three-dimensional network structure, are widely applied in fields such as biomedicine, environmental monitoring, and flexible electronics. This paper provides a systematic review of hydrogel characterization methods and their applications, focusing on primary evaluation techniques for physical properties (e.g., mechanical strength, swelling behavior, and pore structure), chemical properties (e.g., composition, crosslink density, and degradation behavior), biocompatibility, and functional properties (e.g., drug release, environmental stimulus response, and conductivity). It analyzes the challenges currently faced by characterization methods, such as a More >

  • Open Access

    REVIEW

    A Review of PEO (Polyethylene Oxide) Assisted Electrospinning of Chitosan: Innovation, Production, and Application

    Md. Tanvir Raihan1, Md. Himel Mahmud2, Badhon Chandra Mazumder2, Md. Nazif Hasan Chowdhury3, Mohammad Tajul Islam1,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 677-711, 2025, DOI:10.32604/jpm.2025.068356 - 30 September 2025

    Abstract Electrospinning has gained significant importance across various fields, including biomedicine, filtration, and packaging due to the control it provides over the properties of the resulting materials, such as fiber diameter and membrane thickness. Chitosan is a biopolymer that can be utilized with both natural and synthetic copolymers, owing to its therapeutic potential, biocompatibility, and biodegradability. However, producing electrospun chitosan is challenging due to its high solution viscosity, which often results in the formation of beads instead of uniform fibers. To address this issue, the spinnability of chitosan is significantly enhanced, and the production of continuous More >

  • Open Access

    ARTICLE

    Bagasse Fibers Surface Heat Treatment and Its Effect on Mechanical Properties of Starch/Poly (Vinyl Alcohol) Composites

    Xiangyang Zhou1, Yashi Wang1, Min Xiao1,*, Jiajun Liu1,2, Jiahao Wen1, Haodong Shen3, Hucan Hong1

    Journal of Polymer Materials, Vol.42, No.3, pp. 795-810, 2025, DOI:10.32604/jpm.2025.068200 - 30 September 2025

    Abstract Sugarcane bagasse (SCB) is a promising natural fiber for bio-based composites, but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance. While chemical treatments have been extensively explored, limited research has addressed how thermal treatment alone alters the surface properties and reinforcing behavior of SCB fibers. This study aims to fill that gap by investigating the effects of heat treatment on SCB fiber structure and its performance in starch/poly (vinyl alcohol) (PVA) composites. Characterization techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning… More >

  • Open Access

    REVIEW

    A Minireview on Comprehensive Application of Hydrogels Used as Electrolytes in Flexible Zinc-Air Batteries

    Yinglai Tang, Jiale Xie, Yujie Chen, Xingxu Liu, Xiaomin Kang*

    Journal of Polymer Materials, Vol.42, No.3, pp. 587-619, 2025, DOI:10.32604/jpm.2025.067647 - 30 September 2025

    Abstract With the rapid development of flexible and wearable electronic devices, the demand for flexible power sources with high energy density and long service life is imminent. Zinc-air batteries have long been regarded as an important development direction in the future due to their high safety, environmental efficiency, abundant reserves and low cost. However, problems such as zinc dendrite growth, corrosion, by-product generation, hydrogen evolution and leakage, and evaporation of electrolyte affect the commercialization of zinc-air batteries. In addition, currently widely used aqueous electrolytes lead to larger batteries, which is not conducive to the development of… More >

  • Open Access

    REVIEW

    Design of Nanostructured Surfaces and Hydrogel Coatings for Anti-Bacterial Adhesion

    Nanpu Cao1, Huan Luo1, Song Yue1, Yong Chen1, Mao Xu1, Pu Cao1, Tao Xin1, Hongying Luo1, Fa Zhang2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 661-675, 2025, DOI:10.32604/jpm.2025.067313 - 30 September 2025

    Abstract This review systematically summarizes recent advancements in the design of antibacterial hydrogels and the surface-related factors influencing microbial adhesion to polymeric materials. Hydrogels, characterized by their three-dimensional porous architecture and ultra-high water content, serve as ideal platforms for incorporating antibacterial agents (e.g., metal ions, natural polymers) through physical/chemical interactions, enabling sustained release and enhanced antibacterial efficacy. For traditional polymers, surface properties (e.g., roughness, charge, superhydrophobicity, free energy, nanoforce gradients) play critical roles in microbial adhesion. Modifying the surface properties of polymers through surface treatment can regulate antibacterial performance. In particular, by referencing the micro/nanostructures found More >

Displaying 1-10 on page 1 of 178. Per Page