Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (193)
  • Open Access

    REVIEW

    Research Progress in the Preparation of MOF/Cellulose Composites and Their Applications in Fluorescent Detection, Adsorption, and Degradation of Pollutants in Wastewater

    Zhimin Zhao, Liyun Feng, Dongsheng Song, Ming Zhang*

    Journal of Polymer Materials, Vol.42, No.4, pp. 929-957, 2025, DOI:10.32604/jpm.2025.074529 - 26 December 2025

    Abstract Global water pollution is becoming increasingly serious, and compound pollutants such as heavy metals and organic dyes pose multidimensional threats to ecology and human health. Metal-organic skeleton compounds (MOFs) have been proven to be highly efficient in capturing a variety of pollutants by virtue of their large specific surface area, adjustable pore channels, and abundant active sites. However, the easy agglomeration of powders, the difficulty of recycling, and the poor long-term stability have limited their practical applications. Cellulose, as the most abundant renewable polymer in nature, has the characteristics of a three-dimensional network, mechanical flexibility,… More >

  • Open Access

    ARTICLE

    Effect of Drying Methods on the Morphology and Electrochemical Properties of Cellulose Gel Polymer Electrolytes for Lithium-Ion Batteries

    Jiling Song1, Hua Wang2,*, Jianbing Guo1, Minghua Lin2, Bin Zheng2,*, Jiqiang Wu3,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1143-1157, 2025, DOI:10.32604/jpm.2025.073414 - 26 December 2025

    Abstract The pursuit of safer energy storage systems is driving the development of advanced electrolytes for lithium-ion batteries. Traditional liquid electrolytes pose flammability risks, while solid-state alternatives often suffer from low ionic conductivity. Gel polymer electrolytes (GPEs) emerge as a promising compromise, combining the safety of solids with the ionic conductivity of liquids. Cellulose, an abundant and eco-friendly polymer, presents an ideal base material for sustainable GPEs due to its biocompatibility and mechanical strength. This study systematically investigates how drying methods affect cellulose-based GPEs. Cellulose hydrogels were synthesized through dissolution-crosslinking and processed using vacuum drying (VD),… More >

  • Open Access

    ARTICLE

    Polystyrene-Grafted Molybdenum Disulfide Filled Polypropylene Composites for Enhanced Laser Marking Performance

    Minglei Hu1, Wei Zhang1, Bin Hu1, Haicun Yang2, Fuqiang Chu2, Zheng Cao2,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1125-1141, 2025, DOI:10.32604/jpm.2025.073300 - 26 December 2025

    Abstract Polypropylene (PP) has low inherent susceptibility to common industrial lasers, which poses a significant challenge for laser-based marking. To improve the laser sensitivity of PP, molybdenum disulfide grafted with polystyrene (MoS2-g-PS) was synthesized via in-situ free radical polymerization and used as a laser-sensitive filler for PP composites prepared by melt blending. The composites were then marked with a 1064 nm semiconductor laser, producing clear and legible patterns. The marked surfaces were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), colorimetry, Raman spectroscopy, and thermogravimetric analysis (TGA). The results demonstrate that the PP/MoS2-g-PS composites exhibit significantly More >

  • Open Access

    ARTICLE

    Construction of Synergistic and Efficient Flame-Retardant Polyamide 6 Composites by Incorporating Aluminum Diethylphosphinate and Fly Ash

    Ruiping Wang, Chuang He, Shuo Zhang, Miaojun Xu*, Zhuo Wang, Xiaoli Li*, Bin Tao, Suliang Gao, Bin Li*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1035-1049, 2025, DOI:10.32604/jpm.2025.073108 - 26 December 2025

    Abstract The fabrication of highly flame-retardant polyamide 6 (PA6) composites is of great significance for expanding their practical applications. Herein, a new flame-retardant system (ADP/FA) was developed by combining aluminum diethylphosphinate (ADP) with excellent flame retardancy and fly ash (FA), an economical and environmentally friendly industrial waste. Due to the synergistic flame-retardant effect of ADP/FA in the condensed phase and gas phase, the PA6 composite containing only 11 wt% of ADP/FA (mass ratio 93:7) obtained vertical burning (UL-94) tests V-0 rating with a limiting oxygen index (LOI) of 30.9%. To obtain the same flame-retardant level of… More > Graphic Abstract

    Construction of Synergistic and Efficient Flame-Retardant Polyamide 6 Composites by Incorporating Aluminum Diethylphosphinate and Fly Ash

  • Open Access

    ARTICLE

    Engineering Amorphous Solid Dispersions of Abiraterone Acetate via HPMC HME: A Polymer-Centric Hot-Melt Extrusion Strategy for Formulation-Driven Bioavailability Improvement

    Manisha Choudhari1, Shantanu Damle2, Rajat Vashist1, Ranendra Narayan Saha3, Sunil Kumar Dubey4, Gautam Singhvi1,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1199-1229, 2025, DOI:10.32604/jpm.2025.072987 - 26 December 2025

    Abstract Abiraterone acetate (ABTA) was approved by the USFDA in 2011 for treating metastatic castration-resistant prostate cancer (mCRPC). ABTA exhibits poor aqueous solubility, inadequate dissolution, low oral bioavailability (<10%), and significant positive food effects. To overcome these limitations, in the present work, ABTA solid dispersions (SDs) were developed by using hot melt extrusion technology (HME) with various grades of hydroxypropyl methylcellulose HME (HPMC HME 15LV and 100LV) at different extrusion temperatures. HPMC HME demonstrated the ability to prevent drug precipitation for up to 120 min compared to the free drug (10 min), sustaining the supersaturation state… More > Graphic Abstract

    Engineering Amorphous Solid Dispersions of Abiraterone Acetate via HPMC HME: A Polymer-Centric Hot-Melt Extrusion Strategy for Formulation-Driven Bioavailability Improvement

  • Open Access

    ARTICLE

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

    Pooja Yadav1,*, Ramin Farnood2, Vivek Kumar1,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1181-1197, 2025, DOI:10.32604/jpm.2025.072564 - 26 December 2025

    Abstract Heavy metal contamination in water sources is a widespread global concern, particularly in developing nations, with various treatment approaches under extensive scientific investigation. In the present study, we fabricated electrospun composite polyvinylidene fluoride (PVDF) nanofibrous membranes exhibiting hierarchical surface roughness and superhydrophobicity for the removal of heavy metal ions via vacuum membrane distillation (VMD) process. The membranes were prepared by incorporating optimized dosing of silica nanoparticles, followed by a two-step membrane modification approach. These membranes exhibited notable characteristics, including elevated water contact angle (152.8 ± 3.2°), increased liquid entry pressure (127 ± 6 kPa), and… More > Graphic Abstract

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

  • Open Access

    ARTICLE

    Synthesis of Hyperbranched Polyethyleneimine-Propylene Oxide-N-isopropylacrylamide (HPEI-co-PO-co-NIPAM) Terpolymer as a Shale Inhibitor

    Wenjun Hu, Liquan Zhang*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1159-1179, 2025, DOI:10.32604/jpm.2025.072450 - 26 December 2025

    Abstract Addressing the persistent challenge of shale hydration and swelling in water-based drilling fluids (WBDFs), this study developed a smart thermo-responsive shale inhibitor, Hyperbranched Polyethyleneimine-Propylene Oxide-N-isopropylacrylamide (HPN). It was synthesized by grafting hyperbranched polyethyleneimine (HPEI) with propylene oxide (PO) and N-isopropylacrylamide (NIPAM), creating a synergistic hydration barrier through hydrophobic association and temperature-triggered pore plugging. Structural characterization by Fourier-Transform Infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) confirmed the successful formation of the HPN terpolymer, revealing a unique “cationic–nonionic” amphiphilic architecture with temperature-responsive properties. Performance evaluation demonstrated that HPN significantly outperforms conventional inhibitors, including potassium chloride (KCl),… More >

  • Open Access

    ARTICLE

    Tailoring Tribological Behavior of PMMA Using Multi-Component Nanofillers: Insights into Friction, Wear, and Third-Body Flow Dynamics

    Du-Yi Wang1, Shih-Chen Shi1,*, Dieter Rahmadiawan1,2

    Journal of Polymer Materials, Vol.42, No.4, pp. 1075-1095, 2025, DOI:10.32604/jpm.2025.072263 - 26 December 2025

    Abstract Polymethyl methacrylate (PMMA) is widely used in diverse applications such as protective components (e.g., automotive lamp covers and structural casings), optical devices, and biomedical products, owing to its lightweight nature and impact resistance. However, its surface hardness and wear resistance remain insufficient under prolonged exposure to abrasive environments. In this study, a multi-filler strategy with nano-silica (SiO2), brominated lignin (Br-Lignin), and cellulose nanocrystals (CNCs) was employed to enhance PMMA tribological properties. SiO2 provided localized reinforcement, Br-Lignin established stable network structures, and CNCs improved compactness, enabling strong synergistic effects. As a result, the composites achieved up to More >

  • Open Access

    REVIEW

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

    Rafl M. Kamil1, Shaik Nyamathulla1,*, Syed Mahmood1,2,3,4,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 959-992, 2025, DOI:10.32604/jpm.2025.072005 - 26 December 2025

    Abstract With the global diabetes epidemic, diabetic foot ulcers (DFUs) have become a major health burden, affecting approximately 18 million people worldwide each year, and account for about 80% of diabetes-related amputations. Five-year mortality among DFU patients approaches 30%, which is comparable to that of many malignancies. Yet despite standard wound care, only about 30%–40% of chronic DFUs achieve complete healing within 12 weeks. This persistent failure shows that conventional dressings remain passive supports. They do not counteract underlying pathologies such as ischemia, prolonged inflammation, and infection. Recent advances in polymeric nanofiber scaffolds, particularly electrospun matrices,… More > Graphic Abstract

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

  • Open Access

    REVIEW

    Self-Assembly of Active Ingredients in Natural Traditional Chinese Medicine as the Controlled Drug Delivery and Targeted Treatment

    Huaao Jiang#, Bianyifan Xu#, Yang Gui, Ying Xia, Xu Yin, Chao Zhang, Yue Meng, Xin Yu, Yan Wang, Hongmei Xia*

    Journal of Polymer Materials, Vol.42, No.4, pp. 993-1033, 2025, DOI:10.32604/jpm.2025.071740 - 26 December 2025

    Abstract Traditional Chinese medicine (TCM) has a long history and is widely used to prevent and treat various diseases. With the development of modern technology, an increasing number of active ingredients—such as curcumin, berberine, and baicalin—have been identified and validated within TCM. Concurrently, the emergence of nanotechnology has led to the discovery of numerous nanomedicines based on the self-assembly of active ingredients from TCM. Polymer materials can enhance the bioavailability of these active compounds and reduce their toxic side effects. Moreover, compared to synthetic polymers, natural polymer materials offer advantages such as non-toxicity and high biosafety… More >

Displaying 1-10 on page 1 of 193. Per Page