Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,554)
  • Open Access

    PROCEEDINGS

    Rib Design of Fiber-Reinforced Polymer Reinforcement Bars and Study on Stick-Slip Friction at the Concrete Interface

    Quanzhou Yao*, Wenxin Chang, Lin Ye

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011903

    Abstract With the rapid advancement of global infrastructure development and the deepening of sustainable development principles, fiber-reinforced polymer (FRP) reinforcement bars have emerged as an innovative alternative to traditional steel reinforcement due to their lightweight, high-strength, corrosion resistance, and fatigue-resistant properties. However, the practical engineering application of FRP bars in concrete structures still faces critical challenges in optimizing the interfacial bond performance between the reinforcement and concrete. This study addresses the scientific bottleneck in rib height design for FRP bars by systematically investigating the evolution mechanism of fiber strain during the rib-forming process through theoretical analysis… More >

  • Open Access

    PROCEEDINGS

    High-Temperature Fracture Behavior and Toughening Mechanisms of PIP-C/SiC Composites: An Integrated Experimental and Phase-Field Study

    Kunjie Wang, Chenghai Xu*, Xinliang Zhao, Songhe Meng

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011534

    Abstract Considering the high-temperature application environment and quasi-brittle characteristics, the high-temperature fracture toughness of C/SiC composites is of great significance for the safety application of components in service.
    In this work, the fracture toughness of PIP-C/SiC composites at 25–1600 ℃ in inert atmosphere was tested. The test results show that the fracture toughness and modes of C/SiC composites have significant temperature dependence and difference in in-plane and out-of-plane orientations. With the rising of temperature, the carrying capacity and KIC of C/SiC composites increase first and then decrease, and an inflection point occurs near the fabrication temperature.… More >

  • Open Access

    PROCEEDINGS

    Ultrafast Spin Dynamics in Magnetic-Atom-Doped Triangulene Nanoflakes

    Shuai Xu1, Congfei Zang1, Yiming Zhang2, Chun Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-2, 2025, DOI:10.32604/icces.2025.011525

    Abstract The development of novel spintronic devices based on spin manipulation in magnetic nanostructures is crucial for achieving higher speed and miniaturization in future computing technologies. As a unique type of graphene quantum dot, triangulene nanoflakes (TNFs) exhibit nontrivial magnetic properties and excellent extensibility, making them highly promising for the design and application of spin logic units. In this study, we employ first-principles calculations to investigate experimentally synthesizable TNFs, in which transition metal (TM) atoms —namely Fe, Co, Ni, and Cu— are individually introduced at π-conjugated doping sites. The effects of different dopants and doping positions… More >

  • Open Access

    PROCEEDINGS

    In-Vivo Chromophore Characterization of the Human Skin

    Qiaoyun Yu, Shibin Wang*, Zhiyong Wang, Chuanwei Li, Linan Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011080

    Abstract The concentration of chromophores in the human skin provides crucial information for non-invasive skin diagnostics, particularly in clinical and dermatological applications [1,2]. However, only a few studies have reported chromophore concentration measurements at different skin depths [3,4]. This paper introduces a method for the tomographic measurement of skin chromophore concentrations using reflectance spectra. By considering the variations in hemoglobin content at different skin depths, we developed a dual-band skin reflectance spectral model and employed a hyperspectral camera to measure the in vivo spectral reflectance of the human skin. Chromophores including oxyhemoglobin, deoxyhemoglobin, blood oxygen, and melanin… More >

  • Open Access

    PROCEEDINGS

    Electromechanical Grain Boundary Model with Formation Mechanism in Polycrystalline Ferroelectrics

    Xuhui Lou1, Xu Hou2, Jie Wang3, Xiaobao Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011045

    Abstract Grain boundaries (GBs) are transitional, defective, and anisotropic interfaces between adjacent grains with different orientations. However, most models assume that the GB is an isotropic dielectric determined by itself and lacks formation information; these assumptions hinder the theoretical investigation of the effect GBs have on polycrystalline ferroelectrics at the mesoscopic scale. Here, a novel GB model based on the formation mechanism is established for ferroelectric polycrystals. It has been found that the Curie-Weiss temperature range, elastic coefficient, and permittivity of GBs are related to the orientation of adjacent grains and the polarization state. The shielding More >

  • Open Access

    PROCEEDINGS

    The Thermo-Mechanical Coupling Dynamic Analysis of Gear-Rotor-Bearing System with Multiple Dynamic Clearances

    Yingxin Zhang1,2, Shuai Mo1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011038

    Abstract To accurately describe the dynamic behavior of a gear-rotor-bearing system, it is essential to consider the interplay between thermal effects and dynamics. Therefore, this study develops a real-time coupling model that integrates thermal and dynamic aspects of the gear-rotor-bearing system, which captures the combined effects of various nonlinear factors, including dynamic clearances caused by thermal deformation, thermoelastic coupling stiffness, non-uniform load distribution in bearings, and multi-meshing state of gear. Building on this model, the study introduces a stepwise coupled thermodynamic and dynamic joint solution method, which is used to evaluate the effects of thermal influences More >

  • Open Access

    PROCEEDINGS

    Research on Full-Probability Design Method Based on the Direct Probability Integral Method

    Zhenhao Zhang1,*, Yong Tian1,2, Yuanzhi Cao1, Tao Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010846

    Abstract Accurate calculation of the failure probability of structural components was crucial for full-probability level structural design. However, current design codes typically use uniform design factors, which fail to accurately reflect the true failure probability of structures. In this paper, based on the direct probability integral method (DPIM) and combining different design parameter iterative calculation strategies, the full-probabilistic design methods for single-parameter and multi-parameter were proposed, and their accuracy advantages in structural reliability design were verified by engineering examples. Furthermore, this study compares the partial factor method, the design value method, the direct probability design method,… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Failure Mechanics Theory and Digital Applications

    Pengfei Cui*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010832

    Abstract With the continuous advancement of aerospace equipment, in addition to performance, function, and reliability requirements, durability is playing an increasingly crucial role. For instance, the objective of China's new - generation space transportation system is to achieve a reliability of 0.9999 or higher for manned flights, and a single rocket is expected to be capable of up to 100 flights. In high - temperature load - bearing structures, nickel - based alloys are extensively used because of their outstanding strength, fatigue resistance, and creep properties. In advanced aerospace engines, their mass fraction can reach as… More >

  • Open Access

    PROCEEDINGS

    Atomic-Scale Mechanical Enhancement in Fiber-Reinforced Concrete: A Molecular Dynamics Comparison of Glass and Basalt Fibers

    Rui Yang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010698

    Abstract This study employs molecular dynamics (MD) simulations to comparatively investigate the mechanical enhancement mechanisms of glass fiber-reinforced concrete (GFRC) and basalt fiber-reinforced concrete (BFRC). Amorphous models of glass fiber (GF) and basalt fiber (BF), along with calcium silicate hydrate (C-S-H), were constructed using the ClayFF force field in LAMMPS. The interfacial transition zone (ITZ), atomic bonding characteristics, stress distribution, and tensile failure processes were systematically analyzed. Key findings reveal that BF exhibits a denser atomic network structure with higher coordination numbers, driven by the bridging role of Fe and Mg atoms. BFRC demonstrates significantly stronger More >

  • Open Access

    PROCEEDINGS

    Microstructure Mechanism of Stray Grain Formation During Ni-Based Single-Crystal Superalloys Prepared by Laser-Directed Energy Deposition

    Yan Zeng1, Boyuan Guan1, Zhenan Zhao2, Weizhu Yang1, Shouyi Sun1, Lei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010596

    Abstract Ni-based single-crystal superalloys (SX) turbine blades of aeroengines are inevitably damaged during using. Therefore, it is of great significance for commercial aeroengines with high economic requirements to repair SX turbine blades reasonably and continue to realize their value by Laser-Directed energy deposition (L-DED). The repairing of SX must maintain the epitaxial growth of single-crystal, so the microstructure adjustment and the inhibition of stray grains are important for the preparation of L-DED SX.
    In this work, the single channel monolayer and single channel five-layers SX have been prepared by L-DED. Based on the columnar transition to… More >

Displaying 11-20 on page 2 of 1554. Per Page