Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (505)
  • Open Access

    ABSTRACT

    Crack Propagation-Based Fatigue Evaluation of Rib-to-Deck Welded Joints of Orthotropic Steel Bridge Deck by Using Schwartz-Neuman Alternating Method

    Yabin Yang, Guangyu Shi*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 35-35, 2019, DOI:10.32604/icces.2019.05623

    Abstract The efficient and high performance orthotropic steel decks have been widely used in long span bridges over the world. The initial defects at welded joints of orthotropic steel bridge decks will undergo fatigue failure under the action of live load of moving vehicles on the bridge decks. And the fatigue cracks at the rib-to-deck welded joints are the most dangerous cracks for the orthotropic steel bridge decks. Therefore, the fatigue life evaluation of the rib-to-deck welded joints is very important for the safety of orthotropic steel bridge decks. This paper presents a crack propagation-based model… More >

  • Open Access

    ABSTRACT

    On a Solver of Stiffness Maximization Problems in 3D With Multiple Materials Using Reaction Diffusion Equations

    Ryota Misawa*,1, Sunghoon Lim1, Shinichi Maruyama1, Takayuki Yamada1, Kazuhiro Izui1, Shinji Nishiwaki1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 28-28, 2019, DOI:10.32604/icces.2019.05203

    Abstract Multi-material design, where more than one material is placed in appropriate configurations, is indispensable to reduce weights of mechanical components while keeping their required performances. Multi-material topology optimization is a promising method for realizing such efficient multi-material designs.
    The present authors’ group has been developing a multi-material topology optimization method using level set functions and reaction diffusion equations. In this method, multiple level set functions are used to represent the geometrical structure (i.e., shape and topology) and distribution of materials according to the MM-LS (Multi-Material Level Set) model. Then, each level set function is updated using… More >

  • Open Access

    ARTICLE

    3D Bounding Box Proposal for on-Street Parking Space Status Sensing in Real World Conditions

    Yaocheng Zheng1, Weiwei Zhang1,*, Xuncheng Wu1, Bo Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 559-576, 2019, DOI:10.32604/cmes.2019.05684

    Abstract Vision-based technologies have been extensively applied for on-street parking space sensing, aiming at providing timely and accurate information for drivers and improving daily travel convenience. However, it faces great challenges as a partial visualization regularly occurs owing to occlusion from static or dynamic objects or a limited perspective of camera. This paper presents an imagery-based framework to infer parking space status by generating 3D bounding box of the vehicle. A specially designed convolutional neural network based on ResNet and feature pyramid network is proposed to overcome challenges from partial visualization and occlusion. It predicts 3D… More >

  • Open Access

    ARTICLE

    A Data-Intensive FLAC3D Computation Model: Application of Geospatial Big Data to Predict Mining Induced Subsidence

    Yaqiang Gong1,2, Guangli Guo1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.2, pp. 395-408, 2019, DOI:10.32604/cmes.2019.03686

    Abstract Although big data are widely used in various fields, its application is still rare in the study of mining subsidence prediction (MSP) caused by underground mining. Traditional research in MSP has the problem of oversimplifying geological mining conditions, ignoring the fluctuation of rock layers with space. In the context of geospatial big data, a data-intensive FLAC3D (Fast Lagrangian Analysis of a Continua in 3 Dimensions) model is proposed in this paper based on borehole logs. In the modeling process, we developed a method to handle geospatial big data and were able to make full use of More >

  • Open Access

    ARTICLE

    3D Web Reconstruction of a Fibrous Filter Using Sequential Multi-Focus Images

    Lingjie Yu1,2, Guanlin Wang1, Chao Zhi1, Bugao Xu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.2, pp. 365-372, 2019, DOI:10.32604/cmes.2019.04494

    Abstract A fibrous filtering material is a kind of fiber assembly whose structure exhibits a three-dimensional (3D) network with dense microscopic open channels. The geometrical/morphological attributes, such as orientations, curvatures and compactness, of fibers in the network is the key to the filtration performance of the material. However, most of the previous studies were based on materials’ 2D micro-images, which were unable to accurately measure these important 3D features of a filter’s structure. In this paper, we present an imaging method to reconstruct the 3D structure of a fibrous filter from its optical microscopic images. Firstly, More >

  • Open Access

    ARTICLE

    Numerical Simulation of a New 3D Isolation System Designed for a Facility with Large Aspect Ratio

    Ying Zhou1,*, Peng Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 759-777, 2019, DOI:10.32604/cmes.2019.04383

    Abstract This paper proposes a novel three-dimensional (3D) isolation system for facilities and presents the numerical simulation approach for the isolated system under earthquake excitations and impact effect using the OpenSees (Open System for Earthquake Engineering Simulation) software frame work. The 3D isolators combine the quasi-zero stiffness (QZS) system in the vertical direction and lead rubber bearing in the horizontal direction. Considering the large aspect ratio of the isolated facility, linear viscous dampers are designed in the vertical direction to diminish the overturning effect. The vertical QZS isolation system is characterized by a cubic force-displacement relation,… More >

  • Open Access

    ARTICLE

    A Layer-Based Mesh Generator and Scheme for 3D Printing Simulation

    Ming-Hsiao Lee1,*, Shou-I Chen2, Wen-Hwa Chen3, Ying Mao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 363-374, 2019, DOI:10.32604/cmes.2019.06476

    Abstract 3D Printing, also called Additive Manufacturing, has become a promising manufacturing method to produce parts in various fields as it can produce parts even with very irregular shapes in a relatively shorter process and time. However, during the printing process, some problems could decrease the accuracy and quality of the printed parts, such as warpage due to thermal strains, deformation due to inadequate supports, etc. The finite element method is most commonly adopted to evaluate engineering problems in advance to reduce possible failures; however, the element meshes, needed for analyses, are always irregularly distributed, especially… More >

  • Open Access

    ARTICLE

    Finite Element Modeling in Drilling of Nimonic C-263 Alloy Using Deform-3D

    M. Nagaraj1,*, A. John Presin Kumar2, C. Ezilarasan3, Rishab Betala4

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 679-692, 2019, DOI:10.31614/cmes.2019.04924

    Abstract The paper proposes a simulated 3D Finite Element Model (FEM) for drilling of Nickel based super alloy known as Nimonic C-263. The Lagrangian finite element model-based simulations were performed to determine the thrust force, temperature generation, effective stress, and effective strain. The simulations were performed according to the L27 orthogonal array. A perfect plastic work piece was assumed, and the shape is considered to be cylindrical. The spindle speed, feed rate, and point angle were considered as the input parameters. The work piece was modeled by Johnson–Cook (JC) material model and tungsten carbide (WC) was More >

  • Open Access

    ARTICLE

    Model of CEL for 3D Elements in PDMs of Unidirectional Composite Structures

    Tianliang Qin1, Libin Zhao2,3,*, Jifeng Xu1, Fengrui Liu2,3,4, Jianyu Zhang5

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 157-176, 2019, DOI:10.31614/cmes.2019.04379

    Abstract Progressive damage models (PDMs) have been increasingly used to simulate the failure process of composite material structures. To accurately simulate the damage in each ply, 3D PDMs of composite materials have received more attention recently. A characteristic element length (CEL), which is an important dimensional parameter of PDMs for composite materials, is quite difficult to obtain for 3D elements, especially considering the crack directions during damage propagation. In this paper, CEL models for 3D elements in PDMs of unidirectional composite structures are presented, and their approximate formulae are deduced. The damage in unidirectional composite materials… More >

  • Open Access

    ARTICLE

    Improve Computer Visualization of Architecture Based on the Bayesian Network

    Tao Shen1,*, Yukari Nagai1, Chan Gao2

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 307-318, 2019, DOI:10.32604/cmc.2019.04876

    Abstract Computer visualization has marvelous effects when it is applied in various fields, especially in architectural design. As an emerging force in the innovation industry, architects and design agencies have already demonstrated the value of architectural visual products in actual application projects. Based on the digital image technology, virtual presentation of future scenes simulates architecture design, architectural renderings and multimedia videos. Therefore, it can help design agencies transform the theoretical design concept into a lively and realistic visual which can provide the audience with a clearer understanding of the engineering and construction projects. However, it is More >

Displaying 311-320 on page 32 of 505. Per Page