Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Deep Learning-Based Lip-Reading for Vocal Impaired Patient Rehabilitation

    Chiara Innocente1,*, Matteo Boemio2, Gianmarco Lorenzetti2, Ilaria Pulito2, Diego Romagnoli2, Valeria Saponaro2, Giorgia Marullo1, Luca Ulrich1, Enrico Vezzetti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1355-1379, 2025, DOI:10.32604/cmes.2025.063186 - 30 May 2025

    Abstract Lip-reading technology, based on visual speech decoding and automatic speech recognition, offers a promising solution to overcoming communication barriers, particularly for individuals with temporary or permanent speech impairments. However, most Visual Speech Recognition (VSR) research has primarily focused on the English language and general-purpose applications, limiting its practical applicability in medical and rehabilitative settings. This study introduces the first Deep Learning (DL) based lip-reading system for the Italian language designed to assist individuals with vocal cord pathologies in daily interactions, facilitating communication for patients recovering from vocal cord surgeries, whether temporarily or permanently impaired. To… More >

  • Open Access

    ARTICLE

    MSF-Net: A Multilevel Spatiotemporal Feature Fusion Network Combines Attention for Action Recognition

    Mengmeng Yan1, Chuang Zhang1,2,*, Jinqi Chu1, Haichao Zhang1, Tao Ge1, Suting Chen1

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1433-1449, 2023, DOI:10.32604/csse.2023.040132 - 28 July 2023

    Abstract An action recognition network that combines multi-level spatiotemporal feature fusion with an attention mechanism is proposed as a solution to the issues of single spatiotemporal feature scale extraction, information redundancy, and insufficient extraction of frequency domain information in channels in 3D convolutional neural networks. Firstly, based on 3D CNN, this paper designs a new multilevel spatiotemporal feature fusion (MSF) structure, which is embedded in the network model, mainly through multilevel spatiotemporal feature separation, splicing and fusion, to achieve the fusion of spatial perceptual fields and short-medium-long time series information at different scales with reduced network… More >

Displaying 1-10 on page 1 of 2. Per Page