Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Hybrid Framework for Structural Analysis: Integrating Topology Optimization, Adjacent Element Temperature-Driven Pre-Stress, and Greedy Algorithms

    Ibrahim T. Teke1,2, Ahmet H. Ertas2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 243-264, 2025, DOI:10.32604/cmc.2025.066086 - 09 June 2025

    Abstract This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting, runner system optimization, and structural analysis to significantly enhance the performance of injection-molded parts. At its core, the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles, leading to improvements in both mechanical strength and material efficiency. The design optimization is validated through a series of rigorous experimental tests, including three-point bending and torsion tests performed on key-socket frames, ensuring that the optimized designs meet practical performance requirements. A critical innovation of… More >

  • Open Access

    ARTICLE

    3D Printed PEDOT:PSS Flexible Electrochromic Devices for Patterned Displays

    Manting Song1,2, Changchen Gong1,3, Ximei Liu1,2,*

    Journal of Polymer Materials, Vol.42, No.1, pp. 111-123, 2025, DOI:10.32604/jpm.2024.057957 - 27 March 2025

    Abstract Flexible electrochromic devices (FECDs) demonstrate significant potential for applications in wearable electronics, military camouflage, and flexible smart displays. As a crucial electrochromic material, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is widely used in FECDs due to its excellent mechanical flexibility, tunable conductivity, and non-toxicity. However, the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate, costly, and challenging to personalize. To address this challenge, we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy, enabling programmable, patterned printing of PEDOT-based conductive polymer electrochromic layers. The 3D-printed FECDs exhibit outstanding electrochromic performance, including a high More >

  • Open Access

    REVIEW

    Development and application prospect of stem cell combined with 3D printing technology for oral disease

    YIXIAN YOU1,3,#, YIHUNG LEE2,#, YUSHIN HU2, YOUHUI XU3, JOUCHEN CHEN2, WEI JIANG1, CHANGHAI LIU1, ENQIANG CHEN1, HONG TANG1, HUA ZHANG4,*, DONGBO WU1,*

    BIOCELL, Vol.49, No.1, pp. 45-59, 2025, DOI:10.32604/biocell.2024.057259 - 24 January 2025

    Abstract With organ transplantation facing many dilemmas, tissue and organ regeneration as an alternative has bright prospects. In regenerative medicine, Three-dimensional (3D) printing technology and stem cells has been widely applied to the treatment of diseases related to tissue or organ replacement in dentistry, respectively. However, there are very few studies on the combination of the two, and even fewer clinical studies have been reported in dentistry. In this review, the current oral tissue engineering in vivo and in vitro based on 3D printing and stem cell technology will be summarized, and the discussion on the development… More >

  • Open Access

    PROCEEDINGS

    3D Printing of Bioinspired Capillary Transistors

    Ming Gao1, Kun Zhou1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013398

    Abstract Inspired by the unidirectional liquid spreading on Nepenthes peristome, Araucaria leaf, butterfly wings, etc., various microfluidic devices have been developed for water collection, irrigation, physical/chemical reaction, and oil–water separation [1-3]. Despite extensive progress, most natural and artificial structures fail to enhance the Laplace pressure difference or capillary force, thus suffering from a low unidirectional capillary height (< 30 mm). In this work, asymmetric re-entrant structures with long overhangs and connected forward/lateral microchannels are fabricated by three-dimensional (3D) printing, resulting in a significantly increased unidirectional capillary height of 102.3 mm for water, which approximately corresponds to the More >

  • Open Access

    PROCEEDINGS

    Additive Manufacturing of Energy Storage Devices

    Xiaocong Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, 2024, DOI:10.32604/icces.2024.011810

    Abstract With the ever-growing demand for miniature electronics and portable devices, the need for new types of micro-sized, low-cost and high-performance electrochemical energy storage devices becomes a cutting-edge research frontier. Advanced manufacturing technology (such as 3D printing) has brought broad application prospects and new opportunities to the construction of advanced electrochemical energy storage materials and devices. With a focus on “advanced manufacturing of new energy storage materials and devices”, we carried out interdisciplinary research on 3D/4D printing of wearable miniature batteries and supercapacitors, integrable energy devices and systems. Notably, a universal 3D printing approach towards advanced More >

  • Open Access

    PROCEEDINGS

    Selective Laser Sintering of Polymer Materials with Covalent Adaptable Networks Structure

    Zhanhua Wang1,*, Hesheng Xia1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012859

    Abstract Selective laser sintering (SLS) is one of the mainstream 3D printing technologies. A major challenge for SLS technology is the lack of novel polymer powder materials with improved Z-direction strength. Herein, a series of polymer materials with covalent adaptable networks structure were utilized to solve the challenge of SLS. To verify this concept, novel kinds of cross-linked polyurethanes (TPU) or polydimethylsiloxane (PDMS) elastomers containing dynamic covalent bonds including halogenated bisphenol carbamate bonds [1], hindered pyrazole urea bonds [2] or Diels–Alder bonds [3] were synthesized. The obtained dynamic TPU or PDMS exhibited excellent mechanical strength and More >

  • Open Access

    PROCEEDINGS

    How to Design Engineered Organs to Enhance Physiological Function

    Qi Gu1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012648

    Abstract In the complex field of organ fabrication, which combines developmental biology, bioinspired engineering, and regenerative medicine, the main goal is to closely mimic the detailed structure and function of natural organs. While advanced techniques like 3D bioprinting have made significant strides but often fall short in accurately emulating the dynamic, self-organizing processes fundamental to organogenesis, particularly the nuanced patterns of cellular motility and spatial organization [1]. This issue highlights a big challenge in tissue engineering: making synthetic organs that truly match their natural models. Our work aims to bring together principles of developmental biology with… More >

  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

  • Open Access

    PROCEEDINGS

    3D Printing of Triple Periodic Minimal Surface Structures for Customized Personal Wearable Devices

    Meixin Zhou1, Jia Shin Lee2, Kun Zhou1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011064

    Abstract 3D printing of metamaterials has garnered significant attention in recent years, as metamaterials, especially the triple periodic minimal surface (TPMS) structures, are engineered to exhibit extraordinary properties. However, challenges such as limited structural designs and lack of real-world applications have restrained the development of 3D printed metamaterials. Herein, a series of TPMS structures were designed and printed via selective laser sintering, and their mechanical energy absorption capabilities under the quasi-static compression condition were compared. Novel TPMS structures were then designed by blending the investigated TPMS structures, and their compressive properties and deformation mechanism were explored. More >

  • Open Access

    PROCEEDINGS

    3D-Printable Centimeter-Scale Tensegrity Structures for Soft Robotics

    Jiacheng Ji1, Boyu Zhang1, Hongying Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.012193

    Abstract Tensegrity metamaterial, well-known for its unique synergy between compressed bars and tensile strings, enable a remarkable deformation and distinctive vibration characteristic [1]. These materials are increasingly recognized for their potential to facilitate advanced locomotion in soft robots. Tensegrity metamaterials, primarily constructed manually, have found applications in large-scale sectors like architecture and aerospace engineering [2]. However, their integration into soft robots necessitates scaling down to a centimeter scale, presenting challenges in automatic prototyping and kinematic simulation to guide the design process [3].
    Recent advancements advocate for 3D-printed tensegrity structures to achieve integrated, one-piece systems [3,4]. Yet,… More >

Displaying 1-10 on page 1 of 47. Per Page