Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Acrylic Finished Leather Upgraded with Thermoplastic Polyurethane Filament using 3D Printing – A New Generation Hybrid Leather of Synthetic and Natural Polymer

    SIVARAJ SUDHAHARa,f, UMAMAHESWARI Gb, JAYA PRAKASH ALLAc, RAGHAVA RAO JONNALAGADDAd, SUGUNA LAKSHMIe, SANJEEV GUPTAf,*

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 33-45, 2023, DOI:10.32381/JPM.2023.40.1-2.3

    Abstract Leather manufacturing process involves a lot of waste disposal which pollutes environment, some of the processes are inevitable. In the present investigation, 3D printing technology was used to reduce the wastage and to cover defective regions in leather. The present study focuses on synthesis of acrylic binder using emulsion polymerization technique. These binders were analysed for solid content for better optimisation of the amount of binder to be utilised for finishing operation. The experimental binder was prepared with 26% solids. Particle size and thermogravimetric analyses were carried out to understand the size and shape of the particles and their thermal… More >

  • Open Access

    ARTICLE

    Advancing Wound Filling Extraction on 3D Faces: An Auto-Segmentation and Wound Face Regeneration Approach

    Duong Q. Nguyen1, Thinh D. Le3, Phuong D. Nguyen3, Nga T. K. Le2, H. Nguyen-Xuan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2197-2214, 2024, DOI:10.32604/cmes.2023.043992

    Abstract Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications. In this paper, we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network. Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions. To achieve accurate segmentation, we conducted thorough experiments and selected a high-performing model from the trained models. The selected model demonstrates exceptional segmentation performance for complex 3D facial wounds. Furthermore, based on the segmentation model, we propose an improved approach for extracting… More > Graphic Abstract

    Advancing Wound Filling Extraction on 3D Faces: An Auto-Segmentation and Wound Face Regeneration Approach

  • Open Access

    ARTICLE

    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer,… More >

  • Open Access

    ARTICLE

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

    Vitaliy Suvorov1,2,*, Olga Loboda2, Maria Balakina1, Igor Kulczycki2

    Congenital Heart Disease, Vol.18, No.5, pp. 491-505, 2023, DOI:10.32604/chd.2023.030583

    Abstract Background: Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes. The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case. Methods: We performed the prospective cohort study which included 29 children with congenital heart defects. The hearts and the great vessels were modeled and printed out. Measurements of the same cardiac areas were taken in the same planes and points at… More > Graphic Abstract

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

  • Open Access

    EDITORIAL

    Disharmonious Ventricular Relationship and Topology for the Given Atrioventricular Connections. Contemporary Diagnostic Approach Using 3D Modeling and Printing

    Shi-Joon Yoo1,2,*, Ankavipar Saprungruang2, Christopher Z. Lam1, Robert H. Anderson3

    Congenital Heart Disease, Vol.17, No.5, pp. 495-504, 2022, DOI:10.32604/chd.2022.021155

    Abstract In the last issue, two case reports separately present examples of the extremely rare and complex congenital heart diseases that show concordant atrioventricular connections to the L-looped ventricles in the presence of situs solitus. Both cases highlight that the relationship between the two ventricles within the ventricular mass is not always harmonious with the given atrioventricular connection. Such disharmony between the connections and relationships requires careful assessment of the three basic facets of cardiac building blocks, namely their morphology, the relationship of their component parts, and their connections with the adjacent segments. 3D imaging and printing can now facilitate an… More > Graphic Abstract

    Disharmonious Ventricular Relationship and Topology for the Given Atrioventricular Connections. Contemporary Diagnostic Approach Using 3D Modeling and Printing

  • Open Access

    CASE REPORT

    Concordant Atrioventricular Connection to L-Looped Ventricles with the Left Ventricle on Top of the Right Ventricle in Situs Solitus: A Case Report with 3D Modelling and Printing

    Mi Kyoung Song1, Gi Beom Kim1, Woong Han Kim2, Whal Lee3, Eun-Jung Bae1,*

    Congenital Heart Disease, Vol.17, No.4, pp. 393-398, 2022, DOI:10.32604/chd.2022.019603

    Abstract We report the case of a rare complex cardiac anomaly involving situs solitus, concordant atrioventricular connection with left-hand ventricular topology, and L-looped ventricles. The ventricles had a superior-inferior relationship with an inferiorly located right ventricle, which had a double outlet with far posteriorly located great arteries. The left atrium was elongated, with juxta-positioned atrial appendages on the right side. The 3D-printed model using a computed tomography scan taken on the fourth day of birth demonstrated the anatomy clearly and helped us decide on the surgical management. More > Graphic Abstract

    Concordant Atrioventricular Connection to L-Looped Ventricles with the Left Ventricle on Top of the Right Ventricle in Situs Solitus: A Case Report with 3D Modelling and Printing

  • Open Access

    CASE REPORT

    A Rare Case of Concordant Atrioventricular Connection to L-Looped Ventricles in Situs Solitus: 4-Dimensional Magnetic Resonance Imaging and 3D Printing

    Gregory Perens1,*, Takegawa Yoshida2, J. Paul Finn2

    Congenital Heart Disease, Vol.17, No.4, pp. 387-392, 2022, DOI:10.32604/chd.2022.021233

    Abstract An infant male presented with the rare anatomy consisting of situs solitus, concordant atrioventricular connections to L-looped ventricles, double outlet right ventricle (DORV), and hypoplastic aortic arch. 6 months after neonatal aortic arch repair, the morphologic right ventricle function deteriorated, and surgical evaluation was undertaken to determine if either biventricular repair with a systemic morphologic left ventricle or right ventricular exclusion was possible. After initial echocardiography, magnetic resonance imaging (MRI) was used to create detailed axial and 4-dimensional (4D) images and 3-dimensional (3D) printed models. The detailed anatomy of this rare, complex case and its use in pre-surgical planning is… More > Graphic Abstract

    A Rare Case of Concordant Atrioventricular Connection to L-Looped Ventricles in Situs Solitus: 4-Dimensional Magnetic Resonance Imaging and 3D Printing

  • Open Access

    ARTICLE

    The Effect of Printing Parameters and Wood Surface Preparation on the Adhesion of Directly 3D-Printed PLA on Wood

    Daša Krapež Tomec, Angela Balzano, Jure Žigon, Milan Šernek, Mirko Kariž*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1787-1796, 2022, DOI: 10.32604/jrm.2022.019760

    Abstract As additive manufacturing technologies advance, new opportunities are opening up for their application in the furniture industry. Wood remains one of the leading raw materials in the furniture industry; therefore, possible options for combining it with 3D printing have been researched. The bonding of 3D-printed polymer parts with wood or 3D printing with wood-plastic composites is already known, but in our research we attempted to directly 3D print polylactic acid (PLA) on wood surfaces. The effect of printing parameters, as well as the surface preparation of wood on the shear strength of the bond between wood and on-printed material was… More >

  • Open Access

    ARTICLE

    PNN-SVM Approach of Ti-Based Powder’s Properties Evaluation for Biomedical Implants Production

    Ivan Izonin1,*, Roman Tkachenko1, Michal Gregus2, Zoia Duriagina1,3, Nataliya Shakhovska1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5933-5947, 2022, DOI:10.32604/cmc.2022.022582

    Abstract The advent of additive technologies has provided a significant breakthrough in the production of medical implants. It has reduced costs, increased productivity and accuracy of the implant manufacturing process. However, there are problems associated with assessing defects in the microstructure, mechanical and technological properties of alloys, both during their production by powder metallurgy and in the process of 3D printing. Thus traditional research methods of alloys properties demand considerable human, material, and time resources. At the same time, artificial intelligence tools create opportunities for intelligent evaluation of the conformity for the microstructure, phase composition, and properties of titanium powder’s alloys.… More >

  • Open Access

    ARTICLE

    Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing

    Wei Chen1,2, Qiuju Zhang1,2,*, Han Cao1,2, Ye Yuan1,2

    Journal of Renewable Materials, Vol.10, No.2, pp. 329-358, 2022, DOI:10.32604/jrm.2022.016374

    Abstract The aim of this article was to comprehensively evaluate the manufacturing process, tensile properties and fatigue resistance of the chopped and continuous fiber reinforced thermoplastic composites (CFRTPCs) by 3D printing. The main results included: the common defects of the printed CFRTPCs contained redundant and accumulation defects, scratch and warping defects; the continuous fiber contributed to the dimensional stability and accuracy of width and thickness; associations between mass percentage of fiber reinforcement and the averages of elastic modulus, strain at break and ultimate tensile strength were approximately linear based on tensile test results; the fatigue resistance improved with the increasing fiber… More > Graphic Abstract

    Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing

Displaying 1-10 on page 1 of 24. Per Page