Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    REVIEW

    A Comprehensive Survey on Blockchain-Enabled Techniques and Federated Learning for Secure 5G/6G Networks: Challenges, Opportunities, and Future Directions

    Muhammad Asim1,*, Abdelhamied A. Ateya1, Mudasir Ahmad Wani1,2, Gauhar Ali1, Mohammed ElAffendi1, Ahmed A. Abd El-Latif1, Reshma Siyal3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070684 - 12 January 2026

    Abstract The growing developments in 5G and 6G wireless communications have revolutionized communications technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises significant security challenges, including impersonation threats, data manipulation, distributed denial of service (DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning (FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems. Blockchain offers decentralized, immutable, and transparent mechanisms for securing More >

  • Open Access

    ARTICLE

    Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks

    Zeeshan Ali Haider1, Inam Ullah2,*, Ahmad Abu Shareha3, Rashid Nasimov4, Sufyan Ali Memon5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071042 - 10 November 2025

    Abstract The advent of sixth-generation (6G) networks introduces unprecedented challenges in achieving seamless connectivity, ultra-low latency, and efficient resource management in highly dynamic environments. Although fifth-generation (5G) networks transformed mobile broadband and machine-type communications at massive scales, their properties of scaling, interference management, and latency remain a limitation in dense high mobility settings. To overcome these limitations, artificial intelligence (AI) and unmanned aerial vehicles (UAVs) have emerged as potential solutions to develop versatile, dynamic, and energy-efficient communication systems. The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning (CoRL) to manage an autonomous network.… More >

  • Open Access

    ARTICLE

    An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities

    Vi Hoai Nam1, Chu Thi Minh Hue2, Dang Van Anh1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070605 - 10 November 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become integral components in smart city infrastructures, supporting applications such as emergency response, surveillance, and data collection. However, the high mobility and dynamic topology of Flying Ad Hoc Networks (FANETs) present significant challenges for maintaining reliable, low-latency communication. Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable. To overcome these limitations, this paper proposes an improved routing protocol based on reinforcement learning. This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware. The proposed method optimizes the selection of… More >

  • Open Access

    ARTICLE

    Federated Learning for Vision-Based Applications in 6G Networks: A Simulation-Based Performance Study

    Manuel J. C. S. Reis1,*, Nishu Gupta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4225-4243, 2025, DOI:10.32604/cmes.2025.073366 - 23 December 2025

    Abstract The forthcoming sixth generation (6G) of mobile communication networks is envisioned to be AI-native, supporting intelligent services and pervasive computing at unprecedented scale. Among the key paradigms enabling this vision, Federated Learning (FL) has gained prominence as a distributed machine learning framework that allows multiple devices to collaboratively train models without sharing raw data, thereby preserving privacy and reducing the need for centralized storage. This capability is particularly attractive for vision-based applications, where image and video data are both sensitive and bandwidth-intensive. However, the integration of FL with 6G networks presents unique challenges, including communication… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

    Kinzah Noor1, Agbotiname Lucky Imoize2,*, Michael Adedosu Adelabu3, Cheng-Chi Lee4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1575-1664, 2025, DOI:10.32604/cmes.2025.073200 - 26 November 2025

    Abstract The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern… More > Graphic Abstract

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

  • Open Access

    ARTICLE

    Cross-Site Map-Free Indoor Localization for 6G ISAC Systems Using Low-Frequency Radio and Transformer Networks

    Bin Zhang1, En-Cheng Liou2,*, Yi-Chih Tung3, Muhammad Usman2,4, Chiung-An Chen2,4, Chao-Shun Yang2,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2551-2571, 2025, DOI:10.32604/cmes.2025.072471 - 26 November 2025

    Abstract Indoor localization is a fundamental requirement for future 6G Intelligent Sensing and Communication (ISAC) systems, enabling precise navigation in environments where Global Positioning System (GPS) signals are unavailable. Existing methods, such as map-based navigation or site-specific fingerprinting, often require intensive data collection and lack generalization capability across different buildings, thereby limiting scalability. This study proposes a cross-site, map-free indoor localization framework that uses low-frequency sub-1 GHz radio signals and a Transformer-based neural network for robust positioning without prior environmental knowledge. The Transformer’s self-attention mechanisms allow it to capture spatial correlations among anchor nodes, facilitating accurate… More >

  • Open Access

    ARTICLE

    An AI/ML Framework-Driven Approach for Malicious Traffic Detection in Open RAN

    Suhyeon Lee1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2657-2682, 2025, DOI:10.32604/cmes.2025.070627 - 26 November 2025

    Abstract The open nature and heterogeneous architecture of Open Radio Access Network (Open RAN) undermine the consistency of security policies and broaden the attack surface, thereby increasing the risk of security vulnerabilities. The dynamic nature of network performance and traffic patterns in Open RAN necessitates advanced detection models that can overcome the constraints of traditional techniques and adapt to evolving behaviors. This study presents a methodology for effectively detecting malicious traffic in Open RAN by utilizing an Artificial-Intelligence/Machine-Learning (AI/ML) Framework. A hybrid Transformer–Convolutional-Neural-Network (Transformer-CNN) ensemble model is employed for anomaly detection. The proposed model generates final More >

  • Open Access

    ARTICLE

    Wavelet Transform-Based Bayesian Inference Learning with Conditional Variational Autoencoder for Mitigating Injection Attack in 6G Edge Network

    Binu Sudhakaran Pillai1, Raghavendra Kulkarni2, Venkata Satya Suresh kumar Kondeti2, Surendran Rajendran3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1141-1166, 2025, DOI:10.32604/cmes.2025.070348 - 30 October 2025

    Abstract Future 6G communications will open up opportunities for innovative applications, including Cyber-Physical Systems, edge computing, supporting Industry 5.0, and digital agriculture. While automation is creating efficiencies, it can also create new cyber threats, such as vulnerabilities in trust and malicious node injection. Denial-of-Service (DoS) attacks can stop many forms of operations by overwhelming networks and systems with data noise. Current anomaly detection methods require extensive software changes and only detect static threats. Data collection is important for being accurate, but it is often a slow, tedious, and sometimes inefficient process. This paper proposes a new… More >

  • Open Access

    ARTICLE

    Real-Time and Energy-Aware UAV Routing: A Scalable DAR Approach for Future 6G Systems

    Khadija Slimani1,2,*, Samira Khoulji2, Hamed Taherdoost3,4, Mohamed Larbi Kerkeb5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4667-4686, 2025, DOI:10.32604/cmc.2025.070173 - 23 October 2025

    Abstract The integration of the dynamic adaptive routing (DAR) algorithm in unmanned aerial vehicle (UAV) networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G. DAR’s innovative framework incorporates real-time path adjustments, energy-aware routing, and predictive models, optimizing reliability, latency, and energy efficiency in UAV operations. This study demonstrated DAR’s superior performance in dynamic, large-scale environments, proving its adaptability and scalability for real-time applications. As 6G networks evolve, challenges such as bandwidth demands, global spectrum management, security vulnerabilities, and financial feasibility become prominent. DAR aligns with these demands by offering More >

  • Open Access

    REVIEW

    Federated Learning in Convergence ICT: A Systematic Review on Recent Advancements, Challenges, and Future Directions

    Imran Ahmed1,#, Misbah Ahmad2,3,#, Gwanggil Jeon4,5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4237-4273, 2025, DOI:10.32604/cmc.2025.068319 - 23 October 2025

    Abstract The rapid convergence of Information and Communication Technologies (ICT), driven by advancements in 5G/6G networks, cloud computing, Artificial Intelligence (AI), and the Internet of Things (IoT), is reshaping modern digital ecosystems. As massive, distributed data streams are generated across edge devices and network layers, there is a growing need for intelligent, privacy-preserving AI solutions that can operate efficiently at the network edge. Federated Learning (FL) enables decentralized model training without transferring sensitive data, addressing key challenges around privacy, bandwidth, and latency. Despite its benefits in enhancing efficiency, real-time analytics, and regulatory compliance, FL adoption faces… More >

Displaying 1-10 on page 1 of 50. Per Page