Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access


    A Novel 6G Scalable Blockchain Clustering-Based Computer Vision Character Detection for Mobile Images

    Yuejie Li1,2,*, Shijun Li3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3041-3070, 2024, DOI:10.32604/cmc.2023.045741

    Abstract 6G is envisioned as the next generation of wireless communication technology, promising unprecedented data speeds, ultra-low Latency, and ubiquitous Connectivity. In tandem with these advancements, blockchain technology is leveraged to enhance computer vision applications’ security, trustworthiness, and transparency. With the widespread use of mobile devices equipped with cameras, the ability to capture and recognize Chinese characters in natural scenes has become increasingly important. Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount, such as facial recognition or personal healthcare monitoring. Users can control their visual data and grant or revoke access as needed.… More >

  • Open Access


    A Survey on the Role of Complex Networks in IoT and Brain Communication

    Vijey Thayananthan1, Aiiad Albeshri2, Hassan A. Alamri3, Muhammad Bilal Qureshi4, Muhammad Shuaib Qureshi5,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2573-2595, 2023, DOI:10.32604/cmc.2023.040184

    Abstract Complex networks on the Internet of Things (IoT) and brain communication are the main focus of this paper. The benefits of complex networks may be applicable in the future research directions of 6G, photonic, IoT, brain, etc., communication technologies. Heavy data traffic, huge capacity, minimal level of dynamic latency, etc. are some of the future requirements in 5G+ and 6G communication systems. In emerging communication, technologies such as 5G+/6G-based photonic sensor communication and complex networks play an important role in improving future requirements of IoT and brain communication. In this paper, the state of the… More >

  • Open Access


    Enhancing the Trustworthiness of 6G Based on Trusted Multi-Cloud Infrastructure: A Practice of Cryptography Approach

    Mingxing Zhou1,2, Peng Xiao3, Qixu Wang1,2,*, Shuhua Ruan1,2, Xingshu Chen1,2, Menglong Yang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 957-979, 2024, DOI:10.32604/cmes.2023.028612

    Abstract Due to the need for massive device connectivity, low communication latency, and various customizations in 6G architecture, a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario. However, the openness and heterogeneity of the 6G network cause the problems of network security. To improve the trustworthiness of 6G networks, we propose a trusted computing-based approach for establishing trust relationships in multi-cloud scenarios. The proposed method shows the relationship of trust based on dual-level verification. It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state… More >

  • Open Access


    Signature-Based Intrusion Detection System in Wireless 6G IoT Networks

    Mansoor Farooq1,*, Mubashir Hassan Khan2

    Journal on Internet of Things, Vol.4, No.3, pp. 155-168, 2022, DOI:10.32604/jiot.2022.039271

    Abstract An “Intrusion Detection System” (IDS) is a security measure designed to perceive and be aware of unauthorized access or malicious activity on a computer system or network. Signature-based IDSs employ an attack signature database to identify intrusions. This indicates that the system can only identify known attacks and cannot identify brand-new or unidentified assaults. In Wireless 6G IoT networks, signature-based IDSs can be useful to detect a wide range of known attacks such as viruses, worms, and Trojans. However, these networks have specific requirements and constraints, such as the need for real-time detection and low-power More >

  • Open Access


    Efficient Power Control for UAV Based on Trajectory and Game Theory

    Fadhil Mukhlif1,*, Ashraf Osman Ibrahim2, Norafida Ithnin1, Roobaea Alroobaea3, Majed Alsafyani3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5589-5606, 2023, DOI:10.32604/cmc.2023.034323

    Abstract Due to the fact that network space is becoming more limited, the implementation of ultra-dense networks (UDNs) has the potential to enhance not only network coverage but also network throughput. Unmanned Aerial Vehicle (UAV) communications have recently garnered a lot of attention due to the fact that they are extremely versatile and may be applied to a wide variety of contexts and purposes. A cognitive UAV is proposed as a solution for the Internet of Things ground terminal’s wireless nodes in this article. In the IoT system, the UAV is utilised not only to determine… More >

  • Open Access


    Intelligent Modulation Recognition of Communication Signal for Next-Generation 6G Networks

    Mrim M. Alnfiai*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5723-5740, 2023, DOI:10.32604/cmc.2023.033408

    Abstract In recent years, the need for a fast, efficient and a reliable wireless network has increased dramatically. Numerous 5G networks have already been tested while a few are in the early stages of deployment. In non-cooperative communication scenarios, the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them. The recent advancements in both Machine Learning (ML) and Deep Learning (DL) models demand the development of effective modulation recognition models with self-learning capability. In this background, the current research article designs a Deep Learning enabled Intelligent… More >

  • Open Access


    NOMA with Adaptive Transmit Power Using Intelligent Reflecting Surfaces

    Raed Alhamad1,*, Hatem Boujemaa2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2059-2070, 2023, DOI:10.32604/csse.2023.032610

    Abstract In this article, we use Intelligent Reflecting Surfaces (IRS) to improve the throughput of Non Orthogonal Multiple Access (NOMA) with Adaptive Transmit Power (ATP). The results are valid for Cognitive Radio Networks (CRN) where secondary source adapts its power to generate low interference at primary receiver. In all previous studies, IRS were implemented with fixed transmit power and previous results are not valid when the power of the secondary source is adaptive. In CRN, secondary nodes are allowed to transmit over the same band as primary users since they adapt their power to minimize the More >

  • Open Access


    Edge Computing Platform with Efficient Migration Scheme for 5G/6G Networks

    Abdelhamied A. Ateya1, Amel Ali Alhussan2,*, Hanaa A. Abdallah3, Mona A. Al duailij2, Abdukodir Khakimov4, Ammar Muthanna5

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1775-1787, 2023, DOI:10.32604/csse.2023.031841

    Abstract Next-generation cellular networks are expected to provide users with innovative gigabits and terabits per second speeds and achieve ultra-high reliability, availability, and ultra-low latency. The requirements of such networks are the main challenges that can be handled using a range of recent technologies, including multi-access edge computing (MEC), artificial intelligence (AI), millimeter-wave communications (mmWave), and software-defined networking. Many aspects and design challenges associated with the MEC-based 5G/6G networks should be solved to ensure the required quality of service (QoS). This article considers developing a complex MEC structure for fifth and sixth-generation (5G/6G) cellular networks. Furthermore, More >

  • Open Access


    Multi-Band Metamaterial Antenna for Terahertz Applications

    Adel Y. I. Ashyap1, M. Inam2, M. R. Kamarudin1, M. H. Dahri3, Z. A. Shamsan4,*, K. Almuhanna4, F. Alorifi4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1765-1782, 2023, DOI:10.32604/cmc.2023.030618

    Abstract A multi-band metamaterial antenna is proposed to operate at the terahertz (THz) band for medical applications. The proposed structure is designed on a polyimide as a support layer, and its radiating elements are made of graphene. Initially, the design is started with a conventional shape showing a single operating frequency at 1.1 THz. To achieve a multi-band operating frequency, the conventional shape was replaced with the proposed metamaterial as a radiating patch that has properties not exist in nature. The multi-band frequencies are obtained without compromising the overall size of the design. The overall size… More >

  • Open Access


    6G-Enabled Internet of Things: Vision, Techniques, and Open Issues

    Mehdi Hosseinzadeh1, Atefeh Hemmati2, Amir Masoud Rahmani3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 509-556, 2022, DOI:10.32604/cmes.2022.021094

    Abstract There are changes in the development of wireless technology systems every decade. 6G (sixth generation) wireless networks improve on previous generations by increasing dependability, accelerating networks, increasing available bandwidth, decreasing latency, and increasing data transmission speed to standardize communication signals. The purpose of this article is to comprehend the current directions in 6G studies and their relationship to the Internet of Things (IoT). Also, this paper discusses the impacts of 6G on IoT, critical requirements and trends for 6G-enabled IoT, new service classes of 6G and IoT technologies, and current 6G-enabled IoT studies selected by… More >

Displaying 1-10 on page 1 of 24. Per Page