Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    ARTICLE

    Applying a Step Approach Method in Solving the Multi-Frequency Radiation From a Complex Obstacle

    Jui-Hsiang Kao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.112, No.1, pp. 59-73, 2016, DOI:10.3970/cmes.2016.112.059

    Abstract In this paper, a step approach method in the time domain is developed to calculate the radiated waves from an arbitrary obstacle pulsating with multiple frequencies. The computing scheme is based on the Boundary Integral Equation and derived in the time domain; thus, the time-harmonic Neumann boundary condition can be imposed. By the present method, the values of the initial conditions are set to zero, and the approach process is carried forward in a loop from the first time step to the last. At each time step, the radiated pressure on each element is updated. After several loops, the correct… More >

  • Open Access

    ARTICLE

    On the Multiple-Relaxation-Time Micro-Flow Lattice Boltzmann Method for Complex Flows

    Kazuhiko Suga1,2, Takahiko Ito1

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.2, pp. 141-172, 2011, DOI:10.3970/cmes.2011.075.141

    Abstract The multiple-relaxation-time lattice Boltzmann method for micro-scale flows (MRT µ-flow LBM) is extensively evaluated in this study. Following the study of Chai, Shi, Guo and Lu (2010), the diffusive bounce-back wall boundary condition and the collision matrix are modeled. To determine the model parameters, the first-order, 1.5-order and second-order slip-flow models are discussed. Since the mean free path of gas molecules is considered to be influenced by the wall in micro flow systems, the effects of a correction function after Stops (1970) are also evaluated. As the increase of the Knudsen number (Kn), it is necessary to introduce the regularization… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Flow Models for Micro/Nano Fluidics

    Kazuhiko Suga1,2, Takahiko Ito1

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.3, pp. 223-242, 2010, DOI:10.3970/cmes.2010.063.223

    Abstract Flow passages in micro/nano-electro-mechanical systems (MEMS/ -NEMS) usually have complicated geometries. The present study thus discusses on the latest lattice Boltzmann methods (LBMs) for micro/nano fluidics to evaluate their applicability to micro/nano-flows in complex geometries. Since the flow regime is the continuum to the slip and transitional regime with a moderate Knudsen number (Kn), the LBMs presently focused on feature the wall boundary treatment and the relaxation-time for modeling such flow regimes. The discussed micro flow (µ-flow) LBMs are based on the Bhatnagar-Gross-Krook (BGK) model and the multiple relaxation-time (MRT) model. The presently chosen µ-flow BGK LBM (BGK-1 model) consists… More >

  • Open Access

    ARTICLE

    A Time-Marching Algorithm for Solving Non-Linear Obstacle Problems with the Aid of an NCP-Function

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.8, No.2, pp. 53-66, 2008, DOI:10.3970/cmc.2008.008.053

    Abstract Proposed is a time-marching algorithm to solve a nonlinear system of complementarity equations: Pi(xj) ≥ 0, Qi(xj) ≥ 0 , Pi(xj)Qi(xj) = 0, i, j = 1,...,n, resulting from a discretization of nonlinear obstacle problem. We transform the above nonlinear complementarity problem (NCP) into a nonlinear algebraic equations (NAEs) system: Fi(xj) = 0 with the aid of the Fischer-Burmeister NCP-function. Such NAEs are semi-smooth, highly nonlinear and usually implicit, being hard to handle by the Newton-like method. Instead of, a first-order system of ODEs is derived through a fictitious time equation. The time-stepping equations are obtained by applying a numerical… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Quantum Two-Party Geometric Intersection

    Wenjie Liu1,2,*, Yong Xu2, James C. N. Yang3, Wenbin Yu1,2, Lianhua Chi4

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1237-1250, 2019, DOI:10.32604/cmc.2019.03551

    Abstract Privacy-preserving computational geometry is the research area on the intersection of the domains of secure multi-party computation (SMC) and computational geometry. As an important field, the privacy-preserving geometric intersection (PGI) problem is when each of the multiple parties has a private geometric graph and seeks to determine whether their graphs intersect or not without revealing their private information. In this study, through representing Alice’s (Bob’s) private geometric graph GA (GB) as the set of numbered grids SA (SB), an efficient privacy-preserving quantum two-party geometric intersection (PQGI) protocol is proposed. In the protocol, the oracle operation OA (OB) is firstly utilized… More >

  • Open Access

    ARTICLE

    Rare Bird Sparse Recognition via Part-Based Gist Feature Fusion and Regularized Intraclass Dictionary Learning

    Jixin Liu1,*, Ning Sun1,2, Xiaofei Li1, Guang Han1, Haigen Yang1, Quansen Sun3

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 435-446, 2018, DOI: 10.3970/cmc.2018.02177

    Abstract Rare bird has long been considered an important in the field of airport security, biological conservation, environmental monitoring, and so on. With the development and popularization of IOT-based video surveillance, all day and weather unattended bird monitoring becomes possible. However, the current mainstream bird recognition methods are mostly based on deep learning. These will be appropriate for big data applications, but the training sample size for rare bird is usually very short. Therefore, this paper presents a new sparse recognition model via improved part detection and our previous dictionary learning. There are two achievements in our work: (1) after the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Detonation and Multi-Material Interface Tracking

    Cheng Wang1, Jianguo Ning1, Tianbao Ma1

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 73-96, 2011, DOI:10.3970/cmc.2011.022.073

    Abstract In this paper, we report high resolution simulations using a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method to examine the features of the detonation for gas and condensed explosives. A two-stage chemical reaction model and an ignition and growth model are employed to describe the chemical reaction process for gas and condensed explosives. Based on the Steger-Warming vector flux splitting method, a splitting method is employed when the vector flux does not satisfy the homogeneity property for simulating detonation wave propagation for condensed explosives. The sensibility of flame propagation process and explosion overpressure… More >

  • Open Access

    ARTICLE

    The Scalar Homotopy Method for Solving Non-Linear Obstacle Problem

    Chia-Ming Fan1,2, Chein-Shan Liu3, Weichung Yeih1, Hsin-Fang Chan1

    CMC-Computers, Materials & Continua, Vol.15, No.1, pp. 67-86, 2010, DOI:10.3970/cmc.2010.015.067

    Abstract In this study, the nonlinear obstacle problems, which are also known as the nonlinear free boundary problems, are analyzed by the scalar homotopy method (SHM) and the finite difference method. The one- and two-dimensional nonlinear obstacle problems, formulated as the nonlinear complementarity problems (NCPs), are discretized by the finite difference method and form a system of nonlinear algebraic equations (NAEs) with the aid of Fischer-Burmeister NCP-function. Additionally, the system of NAEs is solved by the SHM, which is globally convergent and can get rid of calculating the inverse of Jacobian matrix. In SHM, by introducing a scalar homotopy function and… More >

Displaying 61-70 on page 7 of 68. Per Page