Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (889)
  • Open Access

    ARTICLE

    Coupling of Lattice Boltzmann Equation and Finite Volume Method to Simulate Heat Transfer in a Square Cavity

    Ahmed Mezrhab1, Hassan Naji2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.3, pp. 283-296, 2009, DOI:10.3970/fdmp.2009.005.283

    Abstract The objective of this paper is to assess the effectiveness of the coupled Lattice Boltzmann Equation (LBE) and finite volume method strategy for the simulation of the interaction between thermal radiation and laminar natural convection in a differentially heated square cavity. The vertical walls of the cavity are adiabatic, while its top and bottom walls are cold and hot, respectively. The air velocity is determined by the lattice Boltzmann equation and the energy equation is discretized by using a finite volume method. The resulting systems of discretized equations have been solved by an iterative procedure based on a preconditioned conjugate… More >

  • Open Access

    ARTICLE

    Some Benchmarks of a Side Wall Heated Cavity Using Lattice Boltzmann Approach

    R. Djebali1,2, M. El Ganaoui2,3, H. Sammouda1, R. Bennacer4

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.3, pp. 261-282, 2009, DOI:10.3970/fdmp.2009.005.261

    Abstract The simplified thermal lattice Boltzmann model (STLBM) developed by Peng, Shu and Chew (2003) is used in this work to simulate low-Rayleigh-number natural convection in a heated rectangular cavity on a uniform grid. It is shown how by resorting to the double populations approach both hydrodynamic and thermal fields can be effectively simulated. Furthermore, a general benchmark is carried out to account for the effect of different parameters in relatively wide ranges. Results are compared with previous works available in the literature. More >

  • Open Access

    ARTICLE

    Determination of Physical Properties of Porous Materials by a Lattice Boltzmann Approach

    M.R. Arab1,2, E. Semma3, B. Pateyron1, M. El Ganaoui1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 161-176, 2009, DOI:10.3970/fdmp.2009.005.161

    Abstract In this work, flows in porous media are simulated by using a Lattice Boltzmann Method (LBM). A model D2Q9 with a single collision operator is proposed. This method is applied on 2D digital images obtained by a Scanning Electron Microscope technique (SEM), and followed by a special treatment in order to obtain an image of synthesis that is finally read by the numerical code. The first results tested on two-dimensional configurations show the reliability of this strategy in simulating with a good accuracy phenomena of heat and mass transport. The numerical study is extended to the prediction of physical parameters… More >

  • Open Access

    ARTICLE

    Prediction of Erosion Wear in Multi-Size Particulate Flow through a Rotating Channel

    K.V. Pagalthivarthi1, P.K. Gupta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 93-122, 2009, DOI:10.3970/fdmp.2009.005.093

    Abstract The objective of the present work is to predict erosive wear in multisize dense slurry flow in a rotating channel. The methodology comprises numerical prediction of two-phase flow which is accomplished using the Galerkin finite element method. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. The effect of various operating parameters such as rotation rate, solids concentration, flow rate, particle size distribution and so forth has been studied. Results indicate that wear rate in general increases along the pressure-side of the channel with rotation rate, overall solids concentration, flow rates etc.… More >

  • Open Access

    ARTICLE

    Numerical Study of Convective Heat Transfer in a Horizontal Channel

    M. El Alami1, E. A. Semma2,3, M. Najam1, R. Boutarfa2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 23-36, 2009, DOI:10.3970/fdmp.2009.005.023

    Abstract This study is devoted to the investigation of natural convection in a two dimensional horizontal channel with rectangular heated blocks at the bottom. The aspect ratio of the channel is A = L'/H' = 5. The blocks are heated with a constant temperature while the upper plane of the channel is cold. The governing equations are solved using a finite volumes method and the SIMPLEC algorithm is used for the treatment of the pressure-velocity coupling. Special emphasis is given to detail the effect of the Rayleigh number and blocks height on the heat transfer and the mass flow rate generated… More >

  • Open Access

    ARTICLE

    Towards a Numerical Benchmark for 3D Low Mach Number Mixed Flows in a Rectangular Channel Heated from Below

    G. Accary1, S. Meradji2, D. Morvan2, D. Fougère2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 263-270, 2008, DOI:10.3970/fdmp.2008.004.263

    Abstract In the literature, only few references have dealt with mixed-convection flows in the low Mach number approximation. For this reason, in the present study we propose to extend the standard 3D benchmark for mixed convection in a rectangular channel heated from below (Medale and Nicolas, 2005) to the case of large temperature variations (for which the Boussinesq approximation is no longer valid). The Navier-Stokes equations, obtained under the assumption of a low Mach number flow, are solved using a finite volume method. The results, corresponding to the steady-state case of the benchmark, lead to the idea of launching a call… More >

  • Open Access

    ARTICLE

    The Influence of Flow Pressure Gradient on Interfacial Wave Properties in Annular Two-Phase Flow at Microgravity and Normal Gravity Conditions

    Huawei Han1, Kamiel S. Gabriel2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 287-298, 2006, DOI:10.3970/fdmp.2006.002.287

    Abstract Data on air-water co-current two-phase annular flow in a tube with an inner diameter of 9.525 mm (3/8 in) were previously collected at both microgravity u-g and normal gravity (1-g) conditions. The data contained measurements of pressure drop, in addition to previously published data of liquid film thickness. This paper presents the results and analysis of the influence of flow pressure gradient on interfacial wave properties of annular flow at both microgravity and normal gravity. The examined wave properties include wave base thickness, wave height (or roughness height), wave spacing, wave speed and wave frequency. It was found that, the… More >

  • Open Access

    ARTICLE

    Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method

    Ahmed Mahmoudi1,2, Imen Mejri1, Mohamed Ammar Abbassi1, Ahmed Omri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 353-388, 2013, DOI:10.3970/fdmp.2013.009.353

    Abstract A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM,… More >

  • Open Access

    ARTICLE

    Convective Film Condensation in an Inclined Channel with Porous Layer

    Lazhar Merouani1, Belkacem Zeghmati2, Azeddine Belhamri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 267-290, 2013, DOI:10.3970/fdmp.2013.009.267

    Abstract The present work is a numerical study of laminar film condensation from vapor-gas mixtures in an inclined channel with an insulated upper wall and an isothermal lower wall coated with a thin porous material. A two-dimensional model is developed using a set of complete boundary layer equations for the liquid film and the steam-air mixture while the Darcy-Brinkman-Forchheimer approach is used for the porous material. The governing equations are discretized with an implicit finite difference scheme. The resulting systems of algebraic equations are numerically solved using Gauss and Thomas algorithms. The numerical results enable to determine the velocity, temperature and… More >

  • Open Access

    ARTICLE

    Hydrodynamics and Heat Transfer in Two and Three-dimensional Minichannels

    D. Cherrared1, E. G. Filali1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 127-151, 2013, DOI:10.3970/fdmp.2013.009.127

    Abstract Our study deals with the characterization of the flow and related heat transfer in a smooth, circular minichannel. A duct with a sudden (sharp-edged) contraction is also considered. Prediction of the pressure loss coefficient in this case is obtained via the commercial code CFX 5.7.1. This code is based on the finite volume method for the solution of the Navier-Stokes and offers several turbulences models (in this study we use the shear stress turbulence model - SST). The numerical results are compared with experimental results obtained for a configuration similar to those considered in the numerical study. The numerical algorithm… More >

Displaying 861-870 on page 87 of 889. Per Page