Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14,291)
  • Open Access

    ARTICLE

    Monte Carlo Simulation of Ti-6Al-4V Grain Growth during Fast Heat Treatment

    Amir Reza Ansari Dezfoli1, Weng-Sing Hwang1,2

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 1-11, 2015, DOI:10.3970/cmc.2015.049.001

    Abstract Investigations of the microstructural evolution of Titanium (Ti) alloys during high temperature processes and heat treatment are attracting more attention due to wide variety of applications for such alloys. In most of these processes the Titanium alloys are subjected to fast heating or cooling rates. In this paper, Monte Carlo simulation is used to simulate the grain growth kinetics of Ti-6Al-4V alloy during fast heat treatment. Here, Monte Carlo simulation of grain growth is based on the Q-state Potts model. Our model is calibrated using the parabolic grain growth law, dn-d0n = kt, where the empirical constants are taken… More >

  • Open Access

    ARTICLE

    Guided Waves in Functionally Graded Rods with Rectangular Cross-Section under Initial Stress

    Xiaoming Zhang1, Jiangong Yu1,2, Min Zhang1, Dengpan Zhang1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 163-179, 2015, DOI:10.3970/cmc.2015.048.163

    Abstract The characteristics of the guided waves propagation in functionally graded rods with rectangular cross-section (finite width and height) under initial stress are investigated in this paper based on Biot’s theory of incremental deformation. An extended orthogonal polynomial approach is present to solve the coupled wave equations with variable coefficients. By comparisons with the available results of a rectangular aluminum rod, the validity of the present approach is illustrated. The dispersion curves and displacement profiles of various rectangular functionally graded rods are calculated to reveal the wave characteristics, and the effects of different width to height ratios and initial stress and… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigations on Multicellular GFRP Bridge Deck Panels

    M. P. Muthuraj1,2, K. Nithyapriya1

    CMC-Computers, Materials & Continua, Vol.48, No.2, pp. 119-132, 2015, DOI:10.3970/cmc.2015.048.119

    Abstract The maintenance, upgrading and replacement of existing bridges have become urgent requirement and a challenging task for the construction sector. Bridge decks made of fibre reinforced polymers (FRP), have been widely adopted both in new construction and replacement of existing bridge decks. This paper reports the studies carried out hand lay-up multicellular glass fibre reinforced polymer. Multicellular bridge deck panels with various cross sectional profiles have been analysed using a general purpose finite element software ANSYS. A cross sectional profile that satisfied the deflection criteria with minimum weight was selected for analysis and fabrication. Six multicellular GFRP composite bridge deck… More >

  • Open Access

    ARTICLE

    A New Constitutive Model for Ferromagnetic Shape Memory Alloy Particulate Composites

    H.T. Li1,2,3, Z.Y. Guo1,2, J. Wen1,2, H.G. Xiang1,2, Y.X. Zhang1,2

    CMC-Computers, Materials & Continua, Vol.48, No.2, pp. 91-102, 2015, DOI:10.3970/cmc.2015.048.091

    Abstract Ferromagnetic shape memory alloy particulate composites, which combine the advantages of large magnetic field induced deformation in ferromagnetic shape memory alloys (FSMAs) with high ductility in matrix, can be used for sensor and actuator applications. In this paper, a new constitutive model was proposed to predict the magneto-mechanical behaviors of FSMA particulate composites based on the description for FSMAs, incorporating Eshelby’s equivalent inclusion theory. The influencing factors, such as volume fraction of particles and elastic modulus, were analyzed. The magnetic field induced strain and other mechanical properties under different magnetic field intensity were also investigated. More >

  • Open Access

    ARTICLE

    Study on Lateral Nonlinear Dynamic Response of Deepwater Drilling Riser with Consideration of The Vessel Motions in Its Installation

    Yanbin Wang1,2, Deli Gao1, Jun Fang1

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 57-75, 2015, DOI:10.3970/cmc.2015.048.057

    Abstract In this paper, the mechanical model to analyze the riser lateral vibration displacement and stress distribution in installation has been established via variational approach and the principle of minimum potential energy. In this model, the influence of vessel motion on riser lateral vibration has been taken into consideration. The specific expression of lateral vibration has also been figured out according to the boundary conditions and initial conditions. At last, the variations of riser maximum lateral displacement and stress distribution on water depth (WD), wave height, wave period, riser OD, BOPS weight have been discussed. More >

  • Open Access

    ARTICLE

    Development and Optimization of an Unstructured Kinetic Model for Sodium Gluconate Fermentation Process

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 43-55, 2015, DOI:10.3970/cmc.2015.048.043

    Abstract This study proposed a modified unstructured kinetic model for sodium gluconate fermentation by Aspergillus niger. Four specific growth rate equations (Monod, Tessier, Contois, and logistic) were considered in the biomass growth equation. The growth, instantaneous biomass concentration, instantaneous product, and substrate concentration were considered in the equations of product formation and substrate consumption. Option parameters were introduced to determine the form of the unstructured model. A double-nested optimization strategy was proposed to optimize the option and kinetic parameters. The proposed unstructured kinetic model based on the estimated optimal parameters efficiently simulated sodium gluconate fermentation. The obtained option parameters of the… More >

  • Open Access

    ARTICLE

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    Q.W. Yang1, S.G. Du1,2

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 217-236, 2015, DOI:10.3970/cmc.2015.047.217

    Abstract Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions. In this study, size effect on concrete cubic compressive strength is modeled with a back-propagation neural network. The main advantage in using an artificial neural network (ANN) technique is that the network is built directly from experimental data without any simplifying assumptions via the self-organizing capabilities of the neural network. The proposed ANN model is verified by using 27 experimental data sets collected from the literature. For the large specimens, a modified ANN is developed in the paper to further improve the forecast… More >

  • Open Access

    ARTICLE

    Research and Improvement on the Accuracy of Discontinuous Smoothed Particle Hydrodynamics (DSPH) Method

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 179-201, 2015, DOI:10.3970/cmc.2015.047.179

    Abstract Discontinuous smoothed particle hydrodynamics (DSPH) method based on traditional SPH method, which can be used to simulate discontinuous physics problems near interface or boundary. Previous works showed that DSPH method has a good application prospect [Xu et al, 2013], but further verification and improvement are demanded. In this paper, we investigate the accuracy of DSPH method by some numerical models. Moreover, to improve the accuracy of DSPH method, first order and second order multidimensional RDSPH methods are proposed by following the idea of restoring particle consistency in SPH (RSPH) method which has shown good results in the improvement of particle… More >

  • Open Access

    ARTICLE

    Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams

    M. C. Ray1, L. Dong2, S. N. Atluri3

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 143-177, 2015, DOI:10.3970/cmc.2015.047.143

    Abstract This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an “equivalent single layer high order shear deformation… More >

  • Open Access

    ARTICLE

    Research on damage distribution and permeability distribution of coal seam with slotted borehole

    Yi Xue1,2, Feng Gao1,2,3, Xingguang Liu4, Xiru Li2

    CMC-Computers, Materials & Continua, Vol.47, No.2, pp. 127-141, 2015, DOI:10.3970/cmc.2015.047.127

    Abstract In order to study the effect of high pressure water jet cutting technology on the permeability of single coal seam, we use the damage variable to describe the fracture distribution of coal seam, develop the 3-D finite element program based on the damage theory, and then analyze the damage distribution of coal seam after drilling and slotting. Using MTS815 rock mechanics testing system and the permeability test system, we conduct the permeability test and get the relationship between permeability and damage. Based on the damage distribution of coal seam after drilling and slotting and the permeability change law, we analyze… More >

Displaying 14061-14070 on page 1407 of 14291. Per Page