Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Friction and Wear Modelling in Fiber-Reinforced Composites

    L. Rodríguez-Tembleque1, M.H. Aliabadi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.3, pp. 183-210, 2014, DOI:10.3970/cmes.2014.102.183

    Abstract This work presents new contact constitutive laws for friction and wear modelling in fiber-reinforced plastics (FRP). These laws are incorporated to a numerical methodology which allows us to solve the contact problem taking into account the anisotropic tribological properties on the interfaces. This formulation uses the Boundary Element Method for computing the elastic influence coefficients. Furthermore, the formulation considers micromechanical models for FRP that also makes it possible to take into account the fiber orientation relative to the sliding direction, the fiber volume fraction, the aspect ratio of fibers, or the fiber arrangement. The proposed contact and wear laws, as… More >

  • Open Access

    ARTICLE

    Piecewise Linear Models for Interfaces and Mixed Mode Cohesive Cracks1

    G. Cocchetti2, G. Maier2, X. P. Shen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 279-298, 2002, DOI:10.3970/cmes.2002.003.279

    Abstract Interface models mean here relationships between displacement jumps and tractions across a locus of displacement discontinuities. Frictional contact and quasi-brittle fracture interpreted by cohesive crack models are typical mechanical situations concerned by the present unifying approach. Plastic-softening multidissipative interface models are studied in piecewise linear formats, i.e. assuming linearity for yield functions, plastic potentials and relationships between static and kinematic internal variables. The properties and the pros and cons of such simplified models in a variety of formulations (fully non-holonomic in rates, holonomic and in finite steps), all mathematically described as linear complementarity problems, are comparatively investigated in view of… More >

  • Open Access

    ARTICLE

    Materials Modeling from Quantum Mechanics to The Mesoscale

    G. Fitzgerald1, G. Goldbeck-Wood2, P. Kung1, M. Petersen1, L. Subramanian1, J. Wescott2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 169-184, 2008, DOI:10.3970/cmes.2008.024.169

    Abstract Molecular modeling has established itself as an important component of applied research in areas such as drug discovery, catalysis, and polymers. Algorithmic improvements to these methods coupled with the increasing speed of computational hardware are making it possible to perform predictive modeling on ever larger systems. Methods are now available that are capable of modeling hundreds of thousands of atoms, and the results can have a significant impact on real-world engineering problems. The article reviews some of the modeling methods currently in use; provides illustrative examples of applications to challenges in sensors, fuel cells, and nanocomposites; and finally discusses prospects… More >

  • Open Access

    ARTICLE

    Molecular Mechanics Based Finite Element For Carbon Nanotube Modeling

    T.C. Theodosiou1, D.A. Saravanos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 121-134, 2007, DOI:10.3970/cmes.2007.019.121

    Abstract In this paper a new method is introduced for carbon nanotube modeling combining features of Molecular Mechanics and Finite Element Analysis. Repetitive atomic cells are treated as finite elements, whose internal energy is determined by the semi-empirical Brenner molecular potential model; internal forces and linearized stiffness matrices are formulated analytically in order to gain in speed and accuracy, and the resultant discrete system is formulated and solved using the Newton-Raphson method. The presented method is validated through comparisons to numerical and experimental results provided by other researchers. The bending and shearing of CNTs is also simulated. More >

  • Open Access

    ARTICLE

    Abrasive Wear Model for Al2O3 Particle Reinforced MMCs Using Genetic Expression Programming

    Metin Kök1,2, Erdogan Kanca3

    CMC-Computers, Materials & Continua, Vol.18, No.3, pp. 213-236, 2010, DOI:10.3970/cmc.2010.018.213

    Abstract In this investigation, a new model was developed to predict the wear rate of Al2O3 particle-reinforced aluminum alloy composites by Genetic Expression Programming (GEP). The training and testing data sets were obtained from the well established abrasive wear test results. The volume fraction of particle, particle size of reinforcement, abrasive grain size and sliding distance were used as independent input variables, while wear rate (WR) as dependent output variable. Different models for wear rate were predicted on the basis of training data set using genetic programming and accuracy of the best model was proved with testing data set. The two-body… More >

Displaying 21-30 on page 3 of 25. Per Page