Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (173)
  • Open Access

    ARTICLE

    Numerical Investigation Thermal Performance of Solar Air Heater Using Different Angle V-Grooved of Corrugated Absorber Plate

    Ayad S. Abedalh*, Sohaib Hassan Mohammed

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 227-243, 2023, DOI:10.32604/fhmt.2023.041777

    Abstract Solar energy, a renewable resource, can be harnessed instead of fossil fuels to generate power and heat. One effective method for converting solar energy into heat is through a solar air heating (SAH) system. The theoretical investigation focused on the thermal performance of various V-groove angles on a corrugated absorber plate. The researchers maintained the exterior dimensions and constraints of the absorber plate while increasing its surface area by using a corrugated absorber surface. For the simulation, three different V-groove angles were employed: 45°, 30°, and 15°. The temperature and air flow rate into the system had been set at… More > Graphic Abstract

    Numerical Investigation Thermal Performance of Solar Air Heater Using Different Angle V-Grooved of Corrugated Absorber Plate

  • Open Access

    ARTICLE

    ENTROPY GENERATION IN BOUNDARY LAYER FLOW OF A MICRO POLAR FLUID OVER A STRETCHING SHEET EMBEDDED IN A HIGHLY ABSORBING MEDIUM

    M. Y. Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-13, 2015, DOI:10.5098/hmt.6.7

    Abstract An analytical study of entropy generation in steady boundary layer flow, heat and mass transfer characteristic of 2D convective flow of a micro polar fluid over a stretching sheet embedded through a highly absorbing medium is performed. The governing equations are continuity, momentum boundary layer, micro rotation, and energy takes into account of Rosseland approximation for thermal radiation sources are solved analytically. The governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method and solved… More >

  • Open Access

    ARTICLE

    THERMAL DIFFUSION AND ROTATIONAL EFFECTS ON MAGNETO HYDRODYNAMIC MIXED CONVECTION FLOW OF HEAT ABSORBING/GENERATING VISCO- ELASTIC FLUID THROUGH A POROUS CHANNEL

    L. Ramamohan Reddya , M. C. Rajub,*, G.S.S. Rajuc, N. A. Reddyb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.20

    Abstract This investigation presents an analytical study on magnetohydrodynamic (MHD), convective flow of a viscoelastic, incompressible, radiative, chemically reactive, electrically conducting and rotating fluid through a porous medium filled in a vertical channel in the presence of thermal diffusion. A magnetic field of uniform strength is applied along the axis of rotation. The fluid is assumed to act on with a periodic time variation of the pressure gradient in upward direction vertically. One of the plates is maintained at non-uniform temperature and the temperature difference of the walls of the channel is assumed high enough that induces heat transfer due to… More >

  • Open Access

    ARTICLE

    RADIATION ABSORPTION AND CHEMICAL REACTION EFFECTS ON MHD FLOW OF HEAT GENERATING CASSON FLUID PAST OSCILLATING VERTICAL POROUS PLATE

    S. Harinath Reddya , M.C. Rajua,*, E. Keshava Reddyb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.21

    Abstract This manuscript presents a detailed numerical study on the influence of radiation absorption and chemical reaction on unsteady magneto hydrodynamic free convective heat and mass transfer flow. A heat generating Casson fluid past an oscillating vertical plate embedded in a porous medium in the presence of constant wall temperature and concentration is considered. The non-dimensional governing equations along with the corresponding boundary conditions are solved using Finite difference method numerically. Effects of various emerging flow parameters on concentration, temperature and velocity distributions are presented graphically and analyzed. Expressions for skin-friction, Nusselt number and Sherwood number are also obtained. Effects of… More >

  • Open Access

    ARTICLE

    Water Absorption Capacity and Coating Adhesion on Thermally Modified and Not-Modified Spruce Wood (Blue Stained or Free of Blue Stained)

    Demiao Chu1, Redžo Hasanagić2, Leila Fathi3, Mohsen Bahmani3,*, Miha Humar4

    Journal of Renewable Materials, Vol.11, No.12, pp. 4061-4078, 2023, DOI:10.32604/jrm.2023.043657

    Abstract This study aimed to investigate the water absorption capacity of thermally modified and non-modified spruce and blue-stained spruce wood. The wettability of wood depends on various factors, including its type, density, porosity, and surface treatment. Wood can swell and become distorted when exposed to water or humidity, impacting its structural integrity. Hence, it is crucial to consider the water and water vapour uptake in the wood when choosing materials for applications that are likely to be exposed to moisture. Various moisture absorption tests were conducted to assess water absorption capacity, including short-term and long-term water absorption and water vapour absorption.… More > Graphic Abstract

    Water Absorption Capacity and Coating Adhesion on Thermally Modified and Not-Modified Spruce Wood (Blue Stained or Free of Blue Stained)

  • Open Access

    ARTICLE

    In-Situ Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

    Lei Liu*, Shenao Pang, Zhuhui Luo

    Journal of Renewable Materials, Vol.11, No.11, pp. 3891-3906, 2023, DOI:10.32604/jrm.2023.028192

    Abstract The recycling of carbon fibers and protection from unwanted microwave radiation are two important environmental issues that need to be addressed in modern society. Herein, branched carbon nanofibers (CNFs) were grown in-situ on recycled carbon fibers (RCFs) through the chemical vapor deposition method using nickel as catalysts and thiophene as aided-catalysts. The effect of thiophene on the growth morphology of CNFs was investigated. Correspondingly, branched CNFs-RCFs and straight CNFs-RCFs were respectively obtained in the presence and absence of thiophene. The microstructure and electromagnetic behaviour investigations have shown that the branched CNFs possess a typical multi-branched structure, with more defects, pores… More > Graphic Abstract

    <i>In-Situ</i> Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

  • Open Access

    ARTICLE

    Topic-Aware Abstractive Summarization Based on Heterogeneous Graph Attention Networks for Chinese Complaint Reports

    Yan Li1, Xiaoguang Zhang1,*, Tianyu Gong1, Qi Dong1, Hailong Zhu1, Tianqiang Zhang1, Yanji Jiang2,3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3691-3705, 2023, DOI:10.32604/cmc.2023.040492

    Abstract Automatic text summarization (ATS) plays a significant role in Natural Language Processing (NLP). Abstractive summarization produces summaries by identifying and compressing the most important information in a document. However, there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics. In particular, Chinese complaint reports, generated by urban complainers and collected by government employees, describe existing resident problems in daily life. Meanwhile, the reflected problems are required to respond speedily. Therefore, automatic summarization tasks for these reports have been developed. However, similar to traditional… More >

  • Open Access

    PROCEEDINGS

    Acoustic Topology Optimization of Sound Absorbing Materials Directly from Subdivision Surfaces with IGA-FEM/BEM

    Yanming Xu1,2, Leilei Chen1,2,*, Haojie Lian3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010581

    Abstract An isogeometric coupling algorithm based on the finite element method and the boundary element method (IGA-FEM/BEM) is proposed for the simulation of acoustic fluid-structure interaction and structuralacoustic topology optimization using the direct differentiation method. The geometries are constructed from triangular control meshes through Loop subdivision scheme. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. Numerical examples are presented to demonstrate the validity and efficiency of… More >

  • Open Access

    PROCEEDINGS

    Explicit Dynamics Simulation and Design of Sandwich Composite Structures Reinforced by Multilayer Lattice

    Yadong Zhou1,*, Yile Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09333

    Abstract Dynamic simulation and design of complex composite structures with energy-absorbing lattice are critically important for aircraft applications. In this study, high-velocity impact behaviors (deformation and damage modes) of sandwich composite structures with multilayer lattice are numerically studied by using explicit dynamics computation. First, the modeling strategy for sandwich composite panels with the multilayer lattice and foam core is developed by using Finite Element Method (FEM). In FEM model, the beam, shell, and solid elements are applied together for both the computational accuracy and efficiency. The unit cell model of the lattice is used considering the periodicity of the multilayer structure.… More >

  • Open Access

    PROCEEDINGS

    Ultrafast Adsorption of Tiny Oil Droplets Within Water by Superhydrophobic-Superoleophilic Conical Micro-arrays

    Yunyun Song1, Xu Zhang1, Jialei Yang1, Zhongqiang Zhang1,*, Guanggui Cheng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09916

    Abstract Although floating oil with large particle sizes can easily be separated from water by membrane separation methods, tiny oil droplets with tremendously small volume force and density gradient at oil-water interfaces within water lead to barriers of oil-water separation. Consequently, tiny oil droplets remain in the water, resulting in energy waste, environmental pollution and biological health hazard. Traditional super-wetting membranes with extremely small pore sizes were easily blocked during the oil-water separation process. Inspired by the cactus and rice leaf, we developed a superhydrophobic-superoleophilic surface with conical micro-arrays to realize ultrafast adsorption of tiny oil droplets within the water. The… More >

Displaying 1-10 on page 1 of 173. Per Page