Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (230)
  • Open Access

    ARTICLE

    Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment

    Zhao-Jun Zhang1, Wen-Wei Wang1,2,*, Jing-Shui Zhen1, Bo-Cheng Li1, De-Cheng Cai1, Yang-Yang Du1, Hui Huang2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 105-123, 2025, DOI:10.32604/sdhm.2024.052506 - 15 November 2024

    Abstract This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer (GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone. An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs, and a calculation method based on the conjugate beam method was proposed. The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens. Two methods, epoxy resin bonding, and stud connection, were used to connect the composite… More >

  • Open Access

    ARTICLE

    Effect of Father Absence on Gratitude and Forgiveness: The Mediating Role of Resilience

    Yanhui Xiang1,2,#, Rui Hu2,#, Hui Chen2, Xiaojun Li3,*

    International Journal of Mental Health Promotion, Vol.26, No.12, pp. 1025-1032, 2024, DOI:10.32604/ijmhp.2023.028301 - 31 December 2024

    Abstract Background: Father absence has long been a popular issue in psychology due to its influence on adolescent well-being and development. Empirical studies have demonstrated the detrimental effects of father absence, such as disruptions in prosocial qualities like gratitude and forgiveness. However, the mediating factor between them remains unclear. Hence, this study aims to explore the mediating role of resilience in the influence of father absence on gratitude and forgiveness. Methods: 1951 participants completed the Revision of the Father Absence Questionnaire, the Connor–Davidson Resilience Scale, the Gratitude Questionnaire–6 and the Tendency to Forgive Scale. Harman single… More >

  • Open Access

    ARTICLE

    First and Second Law Analysis of a LiBr-Water Absorption Cycle with Recovering Condensation Heat for Generation

    J. L. Rodríguez-Muñoz1,*, J. S. Pacheco-Cedeño1,*, J. F. Ituna-Yudonago2, J. J. Ramírez-Minguela3, I. J. González-Hernández4

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1719-1741, 2024, DOI:10.32604/fhmt.2024.057924 - 19 December 2024

    Abstract In conventional absorption refrigeration systems (ARS), the heat from the condenser is usually rejected by the environment in place to be used in the system, so recuperating this is a good alternative to enhance the system’s performance. For instance, in this paper, an alternative ARS in which LiBr/Water is used as a refrigerant mixture, where part of condensing heat is recovered via the solution heat recovery generator absorption cycle (HR-ARS) was energy and exergy evaluated. The influence of generator, condenser and evaporator temperatures, as well as the efficiency of the solution heat exchanger on the coefficient of… More > Graphic Abstract

    First and Second Law Analysis of a LiBr-Water Absorption Cycle with Recovering Condensation Heat for Generation

  • Open Access

    PROCEEDINGS

    Additively Manufactured Dual-Faced Structured Fabric for Shape-Adaptive Protection

    Yuanyuan Tian1,2, Kun Zhou1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013372

    Abstract Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, we leverage the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of three-dimensional re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J/kg and 5900 N·m/kg, respectively, together with an excellent recovery ratio of ~80%, thereby overcoming the strength–recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range More >

  • Open Access

    PROCEEDINGS

    The Quasi-Static Compressive Properties and Energy Absorption Behavior of Alumina/Aluminum Lattice Structure Composites

    Han Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012843

    Abstract Aluminum lattice structures have the advantages of lightweight, high specific strength/stiffness and excellent plasticity, while alumina ceramic lattice structures usually show high strength and significant brittleness. Therefore, alumina/aluminum interpenetrating composites can combine two distinct mechanical properties and show superior performance, which is beneficial to applications in aerospace and military industries. In this study, alumina ceramic lattice structures were prepared by additive manufacturing (AM) and used as infiltration skeleton. The molten aluminum was then infiltrated into alumina ceramic lattice structures. By this method, the alumina/aluminum ordered structure composites were prepared. Through mechanical experiments and finite element More >

  • Open Access

    PROCEEDINGS

    Triply Periodic Minimal Surface and Constant Mean Curvature Surfaces Formed Rib Structure’s Energy Absorption

    Quanqing Tao1,*, Qingping Ma1, Xu Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011311

    Abstract This paper explores the design and fabrication of ultralight, rib-strengthened mechanical metamaterials, specifically focusing on thin-walled lattice structure and rib-formed lattice structure in micro 3D printing. The lattice structures, based on triply periodic minimal surfaces (TPMS) and constant mean curvature surfaces (CMCS), provide large surface areas and continuous internal channels with lightweight and multifunctional structural applications. Algorithm designed in this paper incorporates a dynamics relaxation solver to generate pure TPMS and ribbed CMCS, enhancing the lattice design of metamaterials and the use of parametric modeling facilitates the creation of metamaterial lattice models. The paper delves… More >

  • Open Access

    VIEWPOINT

    Recent Breakthroughs in the Characterization of Abscisic Acid Efflux Transporters: Shedding New Light on Abscisic Acid Dynamics and Regulation

    Ivan Couée*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2707-2714, 2024, DOI:10.32604/phyton.2024.058101 - 30 November 2024

    Abstract The 15-carbon terpenoid abscisic acid (ABA) acts in vascular plants as a versatile hormone playing essential roles in reproductive development, vegetative development and growth, stress-development interactions, and physiological responses to abiotic and biotic stresses. Over the past 60 years, ABA dynamics, regulation, and responses have been progressively characterized: synthesis, transport and translocation, conjugation and deconjugation, metabolism, sensing, signal transduction, and downstream responses. In this context, the discovery of ABA exporters and importers has added novel dimensions to the understanding of ABA regulation. Moreover, since the initial discovery of the adenosine triphosphate-binding cassette (ABC) AtABCG25 exporter… More >

  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Sandwich Panel with Re-Entrant Honeycomb Core Reinforced by Catenary Under Air Blast

    Zhen Zou1,2, Fengxiang Xu1,2,*, Yifan Zhu1,2, Xiaoqiang Niu1,2, Xiao Geng1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011093

    Abstract Honeycomb cored sandwich structures have been attracted extensive attentions attributed to outstanding explosion and impact protection capability. Herein, in order to improve the anti-blast performance of re-entrant honeycombs (RH) cored sandwich panel, the conventional RH is reinforced by introducing catenary in the form of connecting both ends of horizontal cell walls and catenary. The results show that the deformation mode of the reinforced RHs (RRH) becomes more stable and regular compared to RHs, and the energy absorption of classic RHs can be enhanced because the reinforced structures and the improved auxetic deformation are employed simultaneously.… More >

  • Open Access

    PROCEEDINGS

    Research on Impact Behavior of Diagonal Gradient Lattice Structure

    Yifan Zhu1,2, Fengxiang Xu1,2,*, Zhen Zou1,2, Xiaoqiang Niu1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011085

    Abstract Functionally graded lattice structures have garnered significant interest in impact research in recent years as novel structures because of the exceptional properties, including lightweight, high specific strength, and high specific stiffness. Aiming at the problem that the current functionally graded lattice structure incorporates gradient characteristics in the longitudinal or transverse direction, with no research on the diagonal gradient characteristics, this paper proposes a diagonal gradient lattice structure (DGLS) based on the body centered cubic (BCC) lattice structure. The quasi-static compression experiments were carried out on the resin samples manufactured through the photocuring molding technique. Besides,… More >

Displaying 1-10 on page 1 of 230. Per Page