Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Regularized Meshless Method for Solving Acoustic Eigenproblem with Multiply-Connected Domain

    K.H. Chen1, J.T. Chen2, J.H. Kao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.1, pp. 27-40, 2006, DOI:10.3970/cmes.2006.016.027

    Abstract In this paper, we employ the regularized meshless method (RMM) to search for eigenfrequency of two-dimension acoustics with multiply-connected domain. The solution is represented by using the double layer potentials. The source points can be located on the physical boundary not alike method of fundamental solutions (MFS) after using the proposed technique to regularize the singularity and hypersingularity of the kernel functions. The troublesome singularity in the MFS methods is desingularized and the diagonal terms of influence matrices are determined by employing the subtracting and adding-back technique. Spurious eigenvalues are filtered out by using singular value decomposition (SVD) updating term… More >

  • Open Access

    ARTICLE

    Computation of Short Wave Equation Pulses Using Nonlinear Solitary Waves

    Meng Fan1, Lesong Wang2, John Steinhoff3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.4, pp. 373-382, 2004, DOI:10.3970/cmes.2004.005.373

    Abstract A new method is described that has the potential to greatly extend the range of application of current Eulerian time domain electromagnetic or acoustic computational methods for certain problems. More >

  • Open Access

    ARTICLE

    Acoustic Design Shape and Topology Sensitivity Formulations Based on Adjoint Method and BEM

    T. Matsumoto1, T. Yamada1, T. Takahashi1, C.J. Zheng2, S. Harada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.2, pp. 77-94, 2011, DOI:10.3970/cmes.2011.078.077

    Abstract Shape design and topology sensitivity formulations for acoustic problems based on adjoint method and the boundary element method are presented and are applied to shape sensitivity analysis and topology optimization of acoustic field. The objective function is assumed to consist only of boundary integrals and quantities defined at certain number of discrete points. The adjoint field is defined so that the sensitivity of the objective function does not include the unknown sensitivity coefficients of the sound pressures and particle velocities on the boundary and in the domain. Since the final sensitivity expression does not have the sensitivity coefficients of the… More >

  • Open Access

    ARTICLE

    An Efficient Trefftz-Based Method for Three-Dimensional Helmholtz Problems in Unbounded Domains

    Bart Bergen1, Bert Van Genechten1, Dirk Vandepitte1, Wim Desmet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.2, pp. 155-176, 2010, DOI:10.3970/cmes.2010.061.155

    Abstract The Wave Based Method (WBM) is a numerical prediction technique for Helmholtz problems. It is an indirect Trefftz method using wave functions, which satisfy the Helmholtz equation, for the description of the dynamic variables. In this way, it avoids both the large systems and the pollution errors that jeopardize accurate element-based predictions in the mid-frequency range. The enhanced computational efficiency of the WBM as compared to the element-based methods has been proven for the analysis of both three-dimensional bounded and two-dimensional unbounded problems. This paper presents an extension of the WBM to the application of three-dimensional acoustic scattering and radiation… More >

  • Open Access

    ARTICLE

    Numerical Computation of Space Derivatives by the Complex-Variable-Differentiation Method in the Convolution Quadrature Method Based BEM Formulation

    A.I. Abreu1, W.J. Mansur1, D. Soares Jr1,2, J.A.M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.3, pp. 123-132, 2008, DOI:10.3970/cmes.2008.030.123

    Abstract This paper is concerned with the numerical computation of space derivatives of a time-domain (TD-) Boundary Element Method (BEM) formulation for the analysis of scalar wave propagation problems. In the present formulation, the Convolution Quadrature Method (CQM) is adopted, i.e., the basic integral equation of the TD-BEM is numerically substituted by a quadrature formula, whose weights are computed using the Laplace transform of the fundamental solution and a linear multi-step method. In order to numerically compute space derivatives, the present work properly transforms the quadrature weights of the CQM-BEM, adopting the so-called Complex-Variable-Differentiation Method (CVDM). Numerical examples are presented at… More >

  • Open Access

    ARTICLE

    Sensitivity of the Acoustic Scattering Problem in Prolate Spheroidal Geometry with Respect to Wavenumber and Shape

    D. Kourounis1, L.N. Gergidis1, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.3, pp. 185-202, 2008, DOI:10.3970/cmes.2008.028.185

    Abstract The sensitivity of analytical solutions of the direct acoustic scattering problem in prolate spheroidal geometry on the wavenumber and shape, is extensively investigated in this work. Using the well known Vekua transformation and the complete set of radiating "outwards'' eigensolutions of the Helmholtz equation, introduced in our previous work ([Charalambopoulos and Dassios(2002)], [Gergidis, Kourounis, Mavratzas, and Charalambopoulos (2007)]), the scattered field is expanded in terms of it, detouring so the standard spheroidal wave functions along with their inherent numerical deficiencies. An approach is employed for the determination of the expansion coefficients, which is optimal in the sense, that minimizes the… More >

  • Open Access

    ARTICLE

    Cumulative Nonlinear Effects in Acoustic Wave Propagation

    Ivan Christov1, C.I. Christov2, P.M. Jordan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 47-54, 2007, DOI:10.3970/cmes.2007.017.047

    Abstract Two widely-used weakly-nonlinear models of acoustic wave propagation --- the inviscid Kuznetsov equation (IKE) and the Lighthill--Westervelt equation (LWE) --- are investigated numerically using a Godunov-type finite-difference scheme. A reformulation of the models as conservation laws is proposed, making it possible to use the numerical tools developed for the Euler equations to study the IKE and LWE, even after the time of shock-formation. It is shown that while the IKE is, without qualification, in very good agreement with the Euler equations, even near the time of shock formation, the same cannot generally be said for the LWE. More >

  • Open Access

    ARTICLE

    An Explicit Multi-Level Time-Step Algorithm to Model the Propagation of Interacting Acoustic-Elastic Waves Using Finite Element/Finite Difference Coupled Procedures

    D. Soares Jr.1,2, W.J. Mansur1, D.L. Lima3

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 19-34, 2007, DOI:10.3970/cmes.2007.017.019

    Abstract The present paper discussion is concerned with the development of robust and efficient algorithms to model propagation of interacting acoustic and elastic waves. The paper considers acoustic-elastic, acoustic-acoustic and elastic-elastic partitioned analyses of coupled systems; however, the focus here is the acoustic-elastic coupling considering finite elements and the acoustic-acoustic coupling considering finite elements and finite differences (other coupling procedures can be implemented analogously). One important feature of the algorithms presented is that they allow considering different time-steps for different sub-domains; so it is possible to substantially improve efficiency, accuracy and stability of the central difference time integration algorithm employed here.… More >

  • Open Access

    ARTICLE

    An Efficient Time-Domain BEM/FEM Coupling for Acoustic-Elastodynamic Interaction Problems

    D. Soares Jr.1, W.J. Mansur1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.2, pp. 153-164, 2005, DOI:10.3970/cmes.2005.008.153

    Abstract A coupling procedure is described to perform time-domain numerical analyses of dynamic fluid-structure interaction. The fluid sub-domains, where acoustic waves propagate, are modeled by the Boundary Element Method (BEM), which is quite suitable to deal with linear homogeneous unbounded domain problems. The Finite Element Method (FEM), on the other hand, models the structure sub-domains, adopting a time marching scheme based on implicit Green's functions. The BEM/FEM coupling algorithm here developed is very efficient, eliminating the drawbacks of standard and iterative coupling procedures. Stability and accuracy features are improved by the adoption of different time steps in each sub-domain of the… More >

  • Open Access

    ARTICLE

    A Boundary Element Model for Underwater Acoustics in Shallow Water

    J.A.F. Santiago1, L.C. Wrobel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 73-80, 2000, DOI:10.3970/cmes.2000.001.375

    Abstract This work presents a boundary element formulation for two-dimensional acoustic wave propagation in shallow water. It is assumed that the velocity of sound in water is constant, the free surface is horizontal, and the seabed is irregular. The boundary conditions of the problem are that the sea bottom is rigid and the free surface pressure is atmospheric.
    For regions of constant depth, fundamental solutions in the form of infinite series can be employed in order to avoid the discretisation of both the free surface and bottom boundaries. When the seabed topography is irregular, it is necessary to divide the… More >

Displaying 21-30 on page 3 of 30. Per Page