Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    A Modified Formulation of Singular Boundary Method for Exterior Acoustics

    Yi Wu, Zhuojia Fu*, Jian Min

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 377-393, 2023, DOI:10.32604/cmes.2022.023205 - 29 September 2022

    Abstract This paper proposes a modified formulation of the singular boundary method (SBM) by introducing the combined Helmholtz integral equation formulation (CHIEF) and the self-regularization technique to exterior acoustics. In the SBM, the concept of the origin intensity factor (OIF) is introduced to avoid the singularities of the fundamental solutions. The SBM belongs to the meshless boundary collocation methods. The additional use of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the exterior acoustics accurately and efficiently. Consequently, by using the SBM coupled with the CHIEF scheme and the More >

  • Open Access

    ARTICLE

    Airborne Acoustic Transmission and Terrain Topography at SAINTGITS Amphitheatre: An Analysis of Outdoor Auditory Perception and Comparison of Contour Plots

    Jacob Thottathil Varghese1,2,*, Sajan Thomas1,2,3, Joselin Herbert4, Chacko Preno Koshy1,2, Arjun Venugopal1,2

    Sound & Vibration, Vol.56, No.3, pp. 255-274, 2022, DOI:10.32604/sv.2022.016180 - 10 August 2022

    Abstract The arrangement of natural and physical features on the earth’s surface are a few among the countless items that govern the airborne acoustic transmission at boundary layers. In particular, if the acoustic waves are attributes of live concerts at open-air theatres, without losing the sheen and quality, the audience should certainly receive the unbroken depth of the performance. Hence, at all times, it is advisable to analyse the auditory receptiveness, particularly in all intended recreational spaces. The current pandemic circumstances and the mandated COVID-19 prevention protocols encourage gatherings in naturally ventilated outdoor regions than confined… More >

  • Open Access

    ARTICLE

    Acoustics Performance Research and Analysis of Light Timber Construction Wall Elements Based on Helmholtz Metasurface

    Si Chen1, Yuhao Zhou1, Sarah Mohrmann2, Haiyan Fu1, Yuying Zou1, Zheng Wang1,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2791-2803, 2022, DOI:10.32604/jrm.2022.021531 - 29 June 2022

    Abstract Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves, this paper investigates an effective solution for light timber construction walls with acoustic problems. This study takes the light timber construction wall structure as the research object. Based on the Helmholtz resonance principle, the structure design of the wall unit, impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure. The research results show that the overall stability… More > Graphic Abstract

    Acoustics Performance Research and Analysis of Light Timber Construction Wall Elements Based on Helmholtz Metasurface

  • Open Access

    ARTICLE

    Preliminary Archaeoacoustic Study of Kanheri Caves in Mumbai (Maharashtra, India)

    Ajinkya S. Umbarkar1,*, Deoram V. Nandanwar1, Omprakash P. Chimankar2

    Sound & Vibration, Vol.56, No.2, pp. 193-203, 2022, DOI:10.32604/sv.2022.015322 - 25 March 2022

    Abstract Here we report first ever study on acoustical evaluation of Kanheri Caves located in Sanjay Gandhi National Park, Mumbai (Maharashtra, India). These caves are dated to a period between 2nd century BCE to 7th century CE. In this study we used an ambisonic recorder to capture Impulse Response, which carries acoustic signature of the place. Out of total 109 caves 41 were surveyed in available time. Out of those reverberant environment was noted in 12 caves. Measurements were made only in 3 caves (Cave Nos. 1, 3, 11) which are important. In the beginning we carried… More >

  • Open Access

    ARTICLE

    Acoustic Properties of Micro-Perforated Panels Made from Oil Palm Empty Fruit Bunch Fiber Reinforced Polylactic Acid

    Vignesh Sekar1,*, Se Yong Eh Noum1, Azma Putra2, Sivakumar Sivanesan1, Kok Chun Chin1, Yi San Wong1, Dg Hafizah Kassim3

    Sound & Vibration, Vol.55, No.4, pp. 343-352, 2021, DOI:10.32604/sv.2021.014916 - 18 October 2021

    Abstract This paper presents the development and performance of micro-perforated panels (MPP) from natural fiber reinforced composites. The MPP is made of Polylactic Acid (PLA) reinforced with Oil Palm Empty Fruit Bunch Fiber (OPEFBF). The investigation was made by varying the fiber density, air gap, and perforation ratio to observe the effect on the Sound Absorption Coefficient (SAC) through the experiment in an impedance tube. It is found that the peak level of SAC is not affected, but the peak frequency shifts to lower frequency when the fiber density is increased. This phenomenon might be due More >

  • Open Access

    ARTICLE

    Corrected Statistical Energy Analysis Model in a Non-Reverberant Acoustic Space

    Al Munawir1, Azma Putra2,*, Iwan Prasetiyo3, Wan Mohd Farid Wan Mohamad2, Safarudin Herawan4

    Sound & Vibration, Vol.55, No.3, pp. 203-219, 2021, DOI:10.32604/sv.2021.015938 - 15 July 2021

    Abstract Statistical Energy Analysis (SEA) is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure. This study investigates the application of the corrected SEA model in a non-reverberant acoustic space where the direct field component from the sound source dominates the total sound field rather than a diffuse field in a reverberant space which the classical SEA model assumption is based on. A corrected SEA model is proposed where the direct field component in the energy is removed and the power injected in the subsystem considers only the remaining More >

  • Open Access

    ARTICLE

    Manipulating Chladni Patterns of Ferromagnetic Materials by an External Magnetic Field

    Kenneth R. Podolak*, Vihan A.W. Wickramasinghe, Gareth A. Mansfield, Alex M. Tuller

    Sound & Vibration, Vol.55, No.3, pp. 235-240, 2021, DOI:10.32604/sv.2021.015008 - 15 July 2021

    Abstract Ernst Chladni is called the father of acoustics for his work, which includes investigating patterns formed by vibrating plates. Understanding these patterns helps research involving standing waves and other harmonic behaviors, including studies of single electron orbits in atoms. Our experiment vibrates circular plates which result in well-known patterns. Alternatively to traditional experiments that used sand or salt, we use magnetic materials, namely iron filings and nickel powder. We then manipulate the patterns by applying a localized external magnetic field to one of the rings that moves a segment of the magnetic material in that More >

  • Open Access

    ARTICLE

    A Combined Shape and Topology Optimization Based on Isogeometric Boundary Element Method for 3D Acoustics

    Jie Wang, Fuhang Jiang, Wenchang Zhao, Haibo Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 645-681, 2021, DOI:10.32604/cmes.2021.015894 - 19 April 2021

    Abstract A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study. The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points, and in topology sensitivity analysis with respect to the artificial densities of sound absorption material. OpenMP tool in Fortran code is adopted to improve the efficiency of analysis. To consider the features and efficiencies of the two types of optimization methods, this study adopts a combined iteration scheme for the optimization process to More >

  • Open Access

    ARTICLE

    A Study on the Reduction of the Aerodynamic Drag and Noise Generated By the Roof Air Conditioner of High-Speed Trains

    Jiali Liu1, Mengge Yu2, *, Dawei Chen1, Zhigang Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 21-30, 2020, DOI:10.32604/fdmp.2020.07658 - 01 February 2020

    Abstract In order to investigate how the aerodynamic drag and noise produced by the roof air conditioner of a high-speed train can be reduced, the related unsteady flow in the near-field was computed using the method of large eddy simulation. In this way, the aerodynamic source for noise generation has initially been determined. Then, the far-field aerodynamic noise has been computed in the framework of the Lighthill’s acoustics analogy theory. The propulsion height and flow-guide angle of the roof air conditioner were set as the design variables. According to the computational results, a lower propulsion height More >

  • Open Access

    ARTICLE

    Frequency Domain Analysis of Fluid-Solid Interaction Problems by Means of Iteratively Coupled Meshless Approaches

    L. Godinho1, D. Soares Jr.2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.4, pp. 327-354, 2012, DOI:10.3970/cmes.2012.087.327

    Abstract In this work, a coupling strategy between the Method of Fundamental Solutions (MFS) and the Kansa's Method (KM) for the analysis of fluid-solid interaction problems in the frequency domain is proposed. In this approach, the MFS is used to model the acoustic fluid medium, while KM accounts for the elastodynamic solid medium. The coupling between the two methods is performed iteratively, with independent discretizations being used for the two methods, without requiring matching between the boundary nodes along the solid-fluid interface. Two application examples, with single and multiple solid sub-domains, are presented, illustrating the behavior More >

Displaying 11-20 on page 2 of 36. Per Page