Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Shock-Boundary Layer Interaction in Transonic Flows: Evaluation of Grid Resolution and Turbulence Modeling Effects on Numerical Predictions

    Mehmet Numan Kaya*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 327-343, 2025, DOI:10.32604/cmes.2025.072000 - 30 October 2025

    Abstract This study investigates the influence of mesh resolution and turbulence model selection on the accuracy of numerical simulations for transonic flow, with particular emphasis on shock-boundary layer interaction phenomena. Accurate prediction of such flows is notoriously difficult due to the sensitivity to near-wall resolution, global mesh density, and turbulence model assumptions, and this problem motivates the present work. Two solvers were employed, rhoCentralFoam (unsteady) and TSLAeroFoam (steady-state), both are compressible and density-based and implemented within the OpenFOAM framework. The investigation focuses on three different non-dimensional wall distance (y+) values of 1, 2.5 and 5, each implemented… More >

  • Open Access

    ARTICLE

    Optimized Foil-Based Impeller Design for Enhanced Power Recovery in Pump-as-Turbine Applications

    Ali Abdulshaheed1,*, Faizal Mustapha1, Mohd Anuar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2289-2304, 2025, DOI:10.32604/fdmp.2025.066983 - 30 September 2025

    Abstract A pump operating as a turbine (PAT) is a type of hydraulic machine capable of functioning both as a pump and as a turbine by reversing the flow direction. The pump-as-turbine (PAT) approach presents an effective method of hydropower generation, particularly suitable for addressing the increasing global energy demands in rural and remote areas. In addition to its adaptability, PAT-based micro-hydropower systems typically incur lower operating costs than conventional hydrodynamic turbines, despite requiring higher initial investment. Recent research has focused on integrating PATs into pipe distribution systems to harness untapped hydraulic energy. This study presents… More >

  • Open Access

    REVIEW

    A Review of Computational Fluid Dynamics Techniques and Methodologies in Vertical Axis Wind Turbine Development

    Ahmad Fazlizan1,*, Wan Khairul Muzammil2, Najm Addin Al-Khawlani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1371-1437, 2025, DOI:10.32604/cmes.2025.067854 - 31 August 2025

    Abstract This review provides a comprehensive and systematic examination of Computational Fluid Dynamics (CFD) techniques and methodologies applied to the development of Vertical Axis Wind Turbines (VAWTs). Although VAWTs offer significant advantages for urban wind applications, such as omnidirectional wind capture and a compact, ground-accessible design, they face substantial aerodynamic challenges, including dynamic stall, blade–wake interactions, and continuously varying angles of attack throughout their rotation. The review critically evaluates how CFD has been leveraged to address these challenges, detailing the modelling frameworks, simulation setups, mesh strategies, turbulence models, and boundary condition treatments adopted in the literature.… More >

  • Open Access

    ARTICLE

    NACA Airfoils as Proposal for Heat Sink Fins: Optimization Investigation

    J. Luis Luviano-Ortiz, Julio Cesar Rodriguez-Mosqueda, Salvador Botello-Aceves, Yanan Camaraza-Medina*, Abel Hernandez-Guerrero

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1165-1183, 2025, DOI:10.32604/fhmt.2025.067466 - 29 August 2025

    Abstract This work presents a simulation analysis using a multi-objective evolutionary algorithm for the thermo-hydraulic behavior of staggered heat sinks whose fins have NACA 0040 airfoil profile. The results were compared with a conventional pin fin heat sink with a circular profile. This study searched for the best thermo-hydraulic performance by translational and rotational positioning of the fins. It is worth mentioning that this work was carried out in two stages. In the first stage, the thermo-hydraulic behavior of the heat sink was studied moving the location of the upper array above the X-axis from −2.25 to… More >

  • Open Access

    ARTICLE

    Uncertainty Quantification of Dynamic Stall Aerodynamics for Large Mach Number Flow around Pitching Airfoils

    Yizhe Han1,2, Guangjing Huang1, Fei Xiao1, Zhiyin Huang3,*, Yuting Dai1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1657-1671, 2025, DOI:10.32604/fdmp.2025.067528 - 31 July 2025

    Abstract During high-speed forward flight, helicopter rotor blades operate across a wide range of Reynolds and Mach numbers. Under such conditions, their aerodynamic performance is significantly influenced by dynamic stall—a complex, unsteady flow phenomenon highly sensitive to inlet conditions such as Mach and Reynolds numbers. The key features of three-dimensional blade stall can be effectively represented by the dynamic stall behavior of a pitching airfoil. In this study, we conduct an uncertainty quantification analysis of dynamic stall aerodynamics in high-Mach-number flows over pitching airfoils, accounting for uncertainties in inlet parameters. A computational fluid dynamics (CFD) model… More >

  • Open Access

    REVIEW

    Experimental Advances in Airfoil Dynamic Stall and Transition Phenomena

    Dapeng Zhang*, Yifan Xie, Yining Zhang, Zhengjie Liang, Yutao Tian

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 697-739, 2025, DOI:10.32604/fdmp.2025.061829 - 06 May 2025

    Abstract Airfoil structures play a crucial role across numerous scientific and technological disciplines, with the transition to turbulence and stall onset remaining key challenges in aerodynamic research. While experimental techniques often surpass numerical simulations in accuracy, they still present notable limitations. This paper begins by elucidating the fundamental principles of transition, dynamic stall, and airfoil behavior. It then provides a systematic review of six major experimental methodologies and examines the emerging role of artificial intelligence in this domain. By identifying key challenges and limitations, the study proposes strategic advancements to address these issues, offering a foundational More > Graphic Abstract

    Experimental Advances in Airfoil Dynamic Stall and Transition Phenomena

  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671 - 23 August 2024

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

  • Open Access

    ARTICLE

    Influence of Surface Ice Roughness on the Aerodynamic Performance of Wind Turbines

    Xin Guan1,2,*, Mingyang Li1, Shiwei Wu1, Yuqi Xie1, Yongpeng Sun1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2029-2043, 2024, DOI:10.32604/fdmp.2024.049499 - 23 August 2024

    Abstract The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines. In particular, two icing processes (frost ice and clear ice) were examined by combining the FENSAP-ICE and FLUENT analysis tools. The ice type on the blade surfaces was predicted by using a multi-time step method. Accordingly, the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated. The results indicate that More >

  • Open Access

    ARTICLE

    Optimized Design of Bio-Inspired Wind Turbine Blades

    Yuanjun Dai1,4,*, Dong Wang1, Xiongfei Liu2, Weimin Wu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1647-1664, 2024, DOI:10.32604/fdmp.2024.046158 - 23 July 2024

    Abstract To enhance the aerodynamic performance of wind turbine blades, this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle. Based on the blade element theory, a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades. Moreover, Computational Fluid Dynamics (CFD) is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil, thereby demonstrating the superior aerodynamic performance of the former. Finally, a mathematical model for optimizing the design of wind turbine blades is introduced and More >

  • Open Access

    ARTICLE

    Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil

    Yuanjun Dai1,2, Jingan Cui1, Baohua Li1,*, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 771-786, 2024, DOI:10.32604/fdmp.2023.029584 - 28 March 2024

    Abstract A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient, lift coefficient, and drag coefficient. The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil; however, at small attack angles, its influence is significantly reduced. When the angle of attack exceeds the critical stall angle and the flap height is 1.5% of the chord length, the influence of the flap becomes very More >

Displaying 1-10 on page 1 of 30. Per Page