Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,357)
  • Open Access

    ARTICLE

    The Research on Low-Light Autonomous Driving Object Detection Method

    Jianhua Yang*, Zhiwei Lv, Changling Huo

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068442 - 10 November 2025

    Abstract Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing, this paper proposes a YOLO-LKSDS automatic driving detection model. Firstly, the Contrast-Limited Adaptive Histogram Equalisation (CLAHE) image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target; then, on the basis of the YOLOv5 model, the Kmeans++ clustering algorithm is introduced to obtain a suitable anchor frame, and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target… More >

  • Open Access

    ARTICLE

    Day-Ahead Electricity Price Forecasting Using the XGBoost Algorithm: An Application to the Turkish Electricity Market

    Yağmur Yılan, Ahad Beykent*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.068440 - 10 November 2025

    Abstract Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies, hedge risk and plan generation schedules. By leveraging advanced data analytics and machine learning methods, accurate and reliable price forecasts can be achieved. This study forecasts day-ahead prices in Türkiye’s electricity market using eXtreme Gradient Boosting (XGBoost). We benchmark XGBoost against four alternatives—Support Vector Machines (SVM), Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GBM)—using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul (EXIST). All models were trained on an identical chronological 80/20 train–test split, with hyperparameters More >

  • Open Access

    ARTICLE

    A New Image Encryption Algorithm Based on Cantor Diagonal Matrix and Chaotic Fractal Matrix

    Hongyu Zhao1,2, Shengsheng Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068426 - 10 November 2025

    Abstract Driven by advancements in mobile internet technology, images have become a crucial data medium. Ensuring the security of image information during transmission has thus emerged as an urgent challenge. This study proposes a novel image encryption algorithm specifically designed for grayscale image security. This research introduces a new Cantor diagonal matrix permutation method. The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix, where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice (CML). The high initial value sensitivity of the… More >

  • Open Access

    ARTICLE

    Multiaxial Fatigue Life Prediction of Metallic Specimens Using Deep Learning Algorithms

    Jing Yang1, Zhiming Liu1,*, Xingchao Li2, Zhongyao Wang3, Beitong Li1, Kaiyang Liu1, Wang Long4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068353 - 10 November 2025

    Abstract Accurately predicting fatigue life under multiaxial fatigue damage conditions is essential for ensuring the safety of critical components in service. However, due to the complexity of fatigue failure mechanisms, achieving accurate multiaxial fatigue life predictions remains challenging. Traditional multiaxial fatigue prediction models are often limited by specific material properties and loading conditions, making it difficult to maintain reliable life prediction results beyond these constraints. This paper presents a study on the impact of seven key feature quantities on multiaxial fatigue life, using Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), and Fully Connected Neural… More >

  • Open Access

    ARTICLE

    Multi-Feature Fragile Image Watermarking Algorithm for Tampering Blind-Detection and Content Self-Recovery

    Qiuling Wu1,*, Hao Li1, Mingjian Li1, Ming Wang2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068220 - 10 November 2025

    Abstract Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright. However, in practical applications, this technology faces various problems such as severe image distortion, inaccurate localization of the tampered regions, and difficulty in recovering content. Given these shortcomings, a fragile image watermarking algorithm for tampering blind-detection and content self-recovery is proposed. The multi-feature watermarking authentication code (AC) is constructed using texture feature of local binary patterns (LBP), direct coefficient of discrete cosine transform (DCT) and contrast feature of gray level co-occurrence matrix (GLCM) for detecting the tampered region, and the… More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    REVIEW

    Machine Intelligence for Mental Health Diagnosis: A Systematic Review of Methods, Algorithms, and Key Challenges

    Ravita Chahar, Ashutosh Kumar Dubey*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-65, 2026, DOI:10.32604/cmc.2025.066990 - 10 November 2025

    Abstract Objective: The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods. Conditions such as anxiety, depression, stress, bipolar disorder (BD), and autism spectrum disorder (ASD) frequently arise from the complex interplay of demographic, biological, and socioeconomic factors, resulting in aggravated symptoms. This review investigates machine intelligence approaches for the early detection and prediction of mental health conditions. Methods: The preferred reporting items for systematic reviews and meta-analyses (PRISMA) framework was employed to conduct a systematic review and analysis covering the period 2018 to 2025. The potential… More >

  • Open Access

    PROCEEDINGS

    Research on Full-Probability Design Method Based on the Direct Probability Integral Method

    Zhenhao Zhang1,*, Yong Tian1,2, Yuanzhi Cao1, Tao Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010846

    Abstract Accurate calculation of the failure probability of structural components was crucial for full-probability level structural design. However, current design codes typically use uniform design factors, which fail to accurately reflect the true failure probability of structures. In this paper, based on the direct probability integral method (DPIM) and combining different design parameter iterative calculation strategies, the full-probabilistic design methods for single-parameter and multi-parameter were proposed, and their accuracy advantages in structural reliability design were verified by engineering examples. Furthermore, this study compares the partial factor method, the design value method, the direct probability design method,… More >

  • Open Access

    ARTICLE

    Understanding Young Adults’ Social Media Anxiety: Mediating Role of Upward Social Comparison and the Moderating Role of Psychological Resilience

    Jinqian Li1, Jianhong Wu2,*

    International Journal of Mental Health Promotion, Vol.27, No.12, pp. 1883-1896, 2025, DOI:10.32604/ijmhp.2025.071306 - 31 December 2025

    Abstract Background: Platform algorithms driving content presentation are profoundly shaping the experience of younger users. While prior research has examined anxiety stemming from young adults’ social media usage, the link between upward social comparison and anxiety remains unclear. This study aims to investigate the mediating role of upward social comparison in this relationship and determine the moderating role of psychological resilience. Methods: A cross-sectional survey was conducted among 562 young Chinese adults aged 18–35 (53% female). Data were collected via an online questionnaire employing validated measurement instruments, including scales for social media usage patterns, upward comparator behaviour… More >

  • Open Access

    REVIEW

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

    Somayah Albaradei1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2937-2970, 2025, DOI:10.32604/cmes.2025.072584 - 23 December 2025

    Abstract Cancer deaths and new cases worldwide are projected to rise by 47% by 2040, with transitioning countries experiencing an even higher increase of up to 95%. Tumor severity is profoundly influenced by the timing, accuracy, and stage of diagnosis, which directly impacts clinical decision-making. Various biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, contribute to cancer development. The emergence of multi-omics technologies has transformed cancer research by revealing molecular alterations across multiple biological layers. This integrative approach supports the notion that cancer is fundamentally driven by such alterations, enabling the discovery of molecular signatures… More > Graphic Abstract

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

Displaying 41-50 on page 5 of 2357. Per Page