Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,869)
  • Open Access

    ARTICLE

    Unmanned Aerial Vehicles General Aerial Person-Vehicle Recognition Based on Improved YOLOv8s Algorithm

    Zhijian Liu*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3787-3803, 2024, DOI:10.32604/cmc.2024.048998

    Abstract Considering the variations in imaging sizes of the unmanned aerial vehicles (UAV) at different aerial photography heights, as well as the influence of factors such as light and weather, which can result in missed detection and false detection of the model, this paper presents a comprehensive detection model based on the improved lightweight You Only Look Once version 8s (YOLOv8s) algorithm used in natural light and infrared scenes (L_YOLO). The algorithm proposes a special feature pyramid network (SFPN) structure and substitutes most of the neck feature extraction module with the Special deformable convolution feature extraction module (SDCN). Moreover, the model… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Algorithm for Handwritten Document Enhancement

    Shu-Chuan Chu1, Xiaomeng Yang1, Li Zhang2, Václav Snášel3, Jeng-Shyang Pan1,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3763-3786, 2024, DOI:10.32604/cmc.2024.048594

    Abstract The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance; however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of… More >

  • Open Access

    ARTICLE

    Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification

    Qinyue Wu, Hui Xu*, Mengran Liu

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4091-4107, 2024, DOI:10.32604/cmc.2024.048461

    Abstract Network traffic identification is critical for maintaining network security and further meeting various demands of network applications. However, network traffic data typically possesses high dimensionality and complexity, leading to practical problems in traffic identification data analytics. Since the original Dung Beetle Optimizer (DBO) algorithm, Grey Wolf Optimization (GWO) algorithm, Whale Optimization Algorithm (WOA), and Particle Swarm Optimization (PSO) algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution, an Improved Dung Beetle Optimizer (IDBO) algorithm is proposed for network traffic identification. Firstly, the Sobol sequence is utilized to initialize the dung beetle population, laying the… More >

  • Open Access

    ARTICLE

    Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks

    Youseef Alotaibi1, B. Rajasekar2, R. Jayalakshmi3, Surendran Rajendran4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4243-4262, 2024, DOI:10.32604/cmc.2024.047608

    Abstract Rapid development in Information Technology (IT) has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle (V2V) transmission. Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data. The communication occurs directly between V2V and Base Station (BS) units such as the Road Side Unit (RSU), named as a Vehicle to Infrastructure (V2I). However, the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time. Therefore, the scheme of an effectual routing protocol for reliable and stable communications is significant. Current research demonstrates… More >

  • Open Access

    ARTICLE

    Path Planning for AUVs Based on Improved APF-AC Algorithm

    Guojun Chen*, Danguo Cheng, Wei Chen, Xue Yang, Tiezheng Guo

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3721-3741, 2024, DOI:10.32604/cmc.2024.047325

    Abstract With the increase in ocean exploration activities and underwater development, the autonomous underwater vehicle (AUV) has been widely used as a type of underwater automation equipment in the detection of underwater environments. However, nowadays AUVs generally have drawbacks such as weak endurance, low intelligence, and poor detection ability. The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks. To improve the underwater operation ability of the AUV, this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm. In response to the limitations of a single… More >

  • Open Access

    REVIEW

    A Review of Computing with Spiking Neural Networks

    Jiadong Wu, Yinan Wang*, Zhiwei Li*, Lun Lu, Qingjiang Li

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2909-2939, 2024, DOI:10.32604/cmc.2024.047240

    Abstract Artificial neural networks (ANNs) have led to landmark changes in many fields, but they still differ significantly from the mechanisms of real biological neural networks and face problems such as high computing costs, excessive computing power, and so on. Spiking neural networks (SNNs) provide a new approach combined with brain-like science to improve the computational energy efficiency, computational architecture, and biological credibility of current deep learning applications. In the early stage of development, its poor performance hindered the application of SNNs in real-world scenarios. In recent years, SNNs have made great progress in computational performance and practicability compared with the… More >

  • Open Access

    ARTICLE

    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph convolutional network (TSADGCN). The dynamic… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing memory cells and gating mechanisms… More >

  • Open Access

    ARTICLE

    Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems

    Xia Li1, Zhanyou Ma1,*, Zhibao Mian2, Ziyuan Liu1, Ruiqi Huang1, Nana He1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4129-4152, 2024, DOI:10.32604/cmc.2024.047168

    Abstract Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications. Although there is an extensive literature on qualitative properties such as safety and liveness, there is still a lack of quantitative and uncertain property verifications for these systems. In uncertain environments, agents must make judicious decisions based on subjective epistemic. To verify epistemic and measurable properties in multi-agent systems, this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge (FCTLK). We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy… More >

  • Open Access

    ARTICLE

    Unmanned Ship Identification Based on Improved YOLOv8s Algorithm

    Chun-Ming Wu1, Jin Lei1,*, Wu-Kai Liu1, Mei-Ling Ren1, Ling-Li Ran2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3071-3088, 2024, DOI:10.32604/cmc.2023.047062

    Abstract Aiming at defects such as low contrast in infrared ship images, uneven distribution of ship size, and lack of texture details, which will lead to unmanned ship leakage misdetection and slow detection, this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm (R_YOLO). The algorithm incorporates the Efficient Multi-Scale Attention mechanism (EMA), the efficient Reparameterized Generalized-feature extraction module (CSPStage), the small target detection header, the Repulsion Loss function, and the context aggregation block (CABlock), which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference. The algorithm… More >

Displaying 21-30 on page 3 of 1869. Per Page