Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Ammonium Metavanadate Fabricated by Selective Precipitation of Impurity Chemicals on Inorganic Flocculants

    Bo Shi1, Dandan Zhu2,*, Pengxiang Lei3, Ximin Li4, Hengbo Xiao4, Lihua Qian4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1951-1961, 2023, DOI:10.32604/jrm.2023.025271

    Abstract High purity ammonium metavanadate (NH4VO3) is the most vital chemical to produce V2O5, VO2, VN alloy, VFe alloy and VOSO4, which have some prospective applications for high strength steel, smart window, infrared detector and imaging, large scale energy storage system. NH4VO3 is usually produced by spontaneous crystallization from the aqueous solution due to its sharp dependence of solubility on the temperature. However, hazardous chemicals in industrial effluent, include phosphorate, silicate and arsenate, causing severe damage to the environment. In this work, these impurities are selectively precipitated onto inorganic flocculants, while the vanadate dissolved in an aqueous solution keeps almost undisturbed.… More > Graphic Abstract

    Ammonium Metavanadate Fabricated by Selective Precipitation of Impurity Chemicals on Inorganic Flocculants

  • Open Access

    ARTICLE

    Analysis of the Performances of a New Type of Alumina Nanocomposite Structural Material Designed for the Thermal Insulation of High-Rise Buildings

    Yue Yu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 697-709, 2023, DOI:10.32604/fdmp.2022.021482

    Abstract The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning, thermal analysis, X-ray and infrared spectrometer analysis methods. It is found that the composite aerogel alumina material has a multi-level porous nano-network structure. When employed for the thermal insulation of high-rise buildings, the alumina nanocomposite aerogel material can lead to effective energy savings in winter. However, it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer. More >

  • Open Access

    ARTICLE

    Flow and Melting Thermal Transfer Enhancement Analysis of Alumina, Titanium Oxide-Based Maxwell Nanofluid Flow Inside Double Rotating Disks with Finite-Element Simulation

    Liangliang Chen1, Madeeha Tahir2,*, Sumeira Yasmin3, Taseer Muhammad4, Muhammad Imran5,*, Fenghua Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1771-1788, 2022, DOI:10.32604/cmes.2022.017539

    Abstract The energy produced by the melting stretching disks surface has a wide range of commercial applications, including semi-conductor material preparation, magma solidification, permafrost melting, and frozen land refreezing, among others. In view of this, in the current communication we analyzed magnetohydrodynamic flow of Maxwell nanofluid between two parallel rotating disks. Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices. Furthermore, the distinct tiny-sized particles and in the Maxwell water-based fluid for enhancing the heat transfer rate are analyzed. The heat equation is developed in the occurrence of thermal… More >

  • Open Access

    ARTICLE

    Preparation of Micro-Iron Ore Tailings by Wet-Grinding and Its Application in Sulphoaluminate Cement

    Yingchun Yang1,*, Liqing Chen1, Xingdong Sun1, Yuguang Mao2

    Journal of Renewable Materials, Vol.10, No.4, pp. 1007-1023, 2022, DOI:10.32604/jrm.2022.017372

    Abstract Herein, micro iron ore tailings (micro-IOTs) were prepared by wet-grinding and applied to improve sulphoaluminate cement (SAC) performance. The physicochemical properties of micro-IOTs were investigated by particle size analysis, XRD, and XPS. The hydrates trait and the hydration mechanism of micro-IOTs-SAC composite were studied by XRD, TGA, MIP, and SEM. The results demonstrated that micro-IOTs with an average grain diameter of 517 nm could be obtained by wet-grinding. The setting time of SAC gradually decreased with increasing micro-IOTs content. By adding 2% micro-IOTs, the compressive strengths of SAC pastes were enhanced about 22% and 10% at 4 h and 28… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Performance of Heat Pump Operating with Copper and Alumina Nanofluids

    Faizan Ahmed*, Waqar Ahmed Khan, Jamal Nayfeh

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2843-2856, 2021, DOI:10.32604/cmc.2021.012041

    Abstract In the present study, an attempt is made to enhance the performance of heat pump by utilizing two types of nanofluids namely, copper and alumina nanofluids. These nanofluids were employed around the evaporator coil of the heat pump. The nanofluids were used to enhance the heat input to the system by means of providing an external jacket around the evaporator coil. Both the nanofluids were prepared in three volume fractions 1%, 2% and 5%. Water was chosen as the base fluid. The performance of the heat pump was assessed by calculating the coefficient of performance of the system when it… More >

  • Open Access

    ARTICLE

    Utilization of Bayer Red Mud Derived from Bauxite for Belite-Ferroaluminate Cement Production

    Yanrong Zhao1,2,3,#, Ping Chen1,4,*,#, Shifeng Wang5, Yaxiong Ji3,4, Yuanhao Wang3,4,*, Bolin Wu1,2, Rongjin Liu1

    Journal of Renewable Materials, Vol.8, No.11, pp. 1531-1541, 2020, DOI:10.32604/jrm.2020.011462

    Abstract Bayer red mud (BRM) is a kind of industrial solid waste characterized by huge volume and high alkalinity. Its disposal generates serious environmental pollution and occupies a large number of farmland. The utilization and recycling of BRM is currently a crucial issue and needs to be addressed as soon as possible. The chemical composition of BRM is similar to cement clinker. In this study, the feasibility of preparing Belite-ferroaluminate clinker (BFAC) with different BRM was explored. The physical properties, mechanics performance, radioactivity levels and trace harmful metals leaching were measured. XRD, BEI and EDS were used to characterize the mineral… More >

  • Open Access

    ARTICLE

    Computational Modeling of Shock and Impact Response of Alumina

    A. M. Rajendran1, D. J. Grove2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 367-380, 2002, DOI:10.3970/cmes.2002.003.367

    Abstract This paper presents detailed computational analyses investigating the ability of constitutive relationships to describe the response of a 99.5% pure alumina (AD995) subjected to a wide range of stress/strain loading states. Using a shock-wave-propagation-based finite element code, one and two-dimensional simulations were performed for the following shock and impact configurations: plate-on-plate impact; rod-on-rod impact; single-density plate-on-rod impact; graded-density plate-on-rod impact; and rod penetration into a thick plate. The detailed analyses presented in this paper include a model constant sensitivity study through comparisons of computed wave profiles with experimental measurements. More >

Displaying 11-20 on page 2 of 17. Per Page