Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Artificial Neural Networks for Optimizing Alumina Al2O3 Particle and Droplet Behavior in 12kK Ar-H2 Atmospheric Plasma Spraying

    Ridha Djebali1,*, Bernard Pateyron2, Mokhtar Ferhi1, Mohamed Ouerhani3, Karim Khemiri1, Montassar Najari1, M. Ammar Abbassi4, Chohdi Amri5, Ridha Ennetta6, Zied Driss7

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 441-461, 2025, DOI:10.32604/fhmt.2025.063375 - 25 April 2025

    Abstract This paper investigates the application of Direct Current Atmospheric Plasma Spraying (DC-APS) as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates. The process uses a high-speed, high-temperature plasma jet to melt and propel the feedstock powder particles, making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells, wind turbines, and fuel cells. The integration of nanostructured alumina (Al2O3) thin films into multilayer coatings is considered a promising advancement that improves mechanical strength, thermal stability, and environmental resistance. The More >

  • Open Access

    ARTICLE

    Numerical Simulation of Blood Flow Dynamics in a Stenosed Artery Enhanced by Copper and Alumina Nanoparticles

    Haris Alam Zuberi1, Madan Lal1, Amol Singh1, Nurul Amira Zainal2,3,*, Ali J. Chamkha4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1839-1864, 2025, DOI:10.32604/cmes.2024.056661 - 27 January 2025

    Abstract Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale. Motivated by the imperative of enhancing patient outcomes, a comprehensive numerical simulation study on the dynamics of blood flow in a stenosed artery, focusing on the effects of copper and alumina nanoparticles, is conducted. The study employs a 2-dimensional Newtonian blood flow model infused with copper and alumina nanoparticles, considering the influence of a magnetic field, thermal radiation, and various flow parameters. The governing differential equations are first non-dimensionalized to facilitate analysis and subsequently solved using… More >

  • Open Access

    PROCEEDINGS

    The Quasi-Static Compressive Properties and Energy Absorption Behavior of Alumina/Aluminum Lattice Structure Composites

    Han Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012843

    Abstract Aluminum lattice structures have the advantages of lightweight, high specific strength/stiffness and excellent plasticity, while alumina ceramic lattice structures usually show high strength and significant brittleness. Therefore, alumina/aluminum interpenetrating composites can combine two distinct mechanical properties and show superior performance, which is beneficial to applications in aerospace and military industries. In this study, alumina ceramic lattice structures were prepared by additive manufacturing (AM) and used as infiltration skeleton. The molten aluminum was then infiltrated into alumina ceramic lattice structures. By this method, the alumina/aluminum ordered structure composites were prepared. Through mechanical experiments and finite element More >

  • Open Access

    ARTICLE

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

    Xuefeng Song*, Minjuan Sun, Juan He, Lei Wang

    Journal of Renewable Materials, Vol.11, No.12, pp. 4079-4095, 2023, DOI:10.32604/jrm.2023.028885 - 10 November 2023

    Abstract The adsorption method has the advantages of low cost, high efficiency, and environmental friendliness in treating fluorinated wastewater, and the adsorbent material is the key. This study combines the inherent anion-exchange adsorption properties of layered double hydroxides (LDHs). Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement (CAC) and flue gas desulfurization gypsum (FGDG) by chemical foaming technique. The mineral composition of the adsorbent material was characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Through the static adsorption experiment, the adsorption… More > Graphic Abstract

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

  • Open Access

    PROCEEDINGS

    The Effect of Heating Rate on Sintering Mechanism of Alumina Nanoparticles

    Dangqiang Wang1, Hai Mei1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09455

    Abstract The densification process of sintered alumina is mainly controlled by surface, lattice, and interface diffusion, and many experimental researches show that heating rate can affect the transfer of matter. Thus, to further reveal the effect of heating rate on sintering mechanism of alumina nanoparticle, molecular dynamic simulations were performed at five different heating rates to examine the migration of atoms and evolution of microstructure in heating stage. Results show that the sintering process of heating is a typical thermal activation process. High displacement response temperature is caused by high heating rate, which results in the More >

  • Open Access

    REVIEW

    Research Progress of Reverse Monte Carlo and Its Application in Josephson Junction Barrier Layer

    Junling Qiu*, Huihui Sun, Shuya Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2077-2109, 2023, DOI:10.32604/cmes.2023.027353 - 03 August 2023

    Abstract As indispensable components of superconducting circuit-based quantum computers, Josephson junctions determine how well superconducting qubits perform. Reverse Monte Carlo (RMC) can be used to recreate Josephson junction’s atomic structure based on experimental data, and the impact of the structure on junctions’ properties can be investigated by combining different analysis techniques. In order to build a physical model of the atomic structure and then analyze the factors that affect its performance, this paper briefly reviews the development and evolution of the RMC algorithm. It also summarizes the modeling process and structural feature analysis of the Josephson More >

  • Open Access

    ARTICLE

    Ammonium Metavanadate Fabricated by Selective Precipitation of Impurity Chemicals on Inorganic Flocculants

    Bo Shi1, Dandan Zhu2,*, Pengxiang Lei3, Ximin Li4, Hengbo Xiao4, Lihua Qian4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1951-1961, 2023, DOI:10.32604/jrm.2023.025271 - 01 December 2022

    Abstract High purity ammonium metavanadate (NH4VO3) is the most vital chemical to produce V2O5, VO2, VN alloy, VFe alloy and VOSO4, which have some prospective applications for high strength steel, smart window, infrared detector and imaging, large scale energy storage system. NH4VO3 is usually produced by spontaneous crystallization from the aqueous solution due to its sharp dependence of solubility on the temperature. However, hazardous chemicals in industrial effluent, include phosphorate, silicate and arsenate, causing severe damage to the environment. In this work, these impurities are selectively precipitated onto inorganic flocculants, while the vanadate dissolved in an aqueous solution keeps More > Graphic Abstract

    Ammonium Metavanadate Fabricated by Selective Precipitation of Impurity Chemicals on Inorganic Flocculants

  • Open Access

    ARTICLE

    Analysis of the Performances of a New Type of Alumina Nanocomposite Structural Material Designed for the Thermal Insulation of High-Rise Buildings

    Yue Yu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 697-709, 2023, DOI:10.32604/fdmp.2022.021482 - 29 September 2022

    Abstract The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning, thermal analysis, X-ray and infrared spectrometer analysis methods. It is found that the composite aerogel alumina material has a multi-level porous nano-network structure. When employed for the thermal insulation of high-rise buildings, the alumina nanocomposite aerogel material can lead to effective energy savings in winter. However, it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer. More >

  • Open Access

    ARTICLE

    CHARACTERISTICS AND THERMAL PERFORMANCE OF NANOFLUID FILM OVER HORIZONTAL MULTI-FACETED CYLINDER

    Fithry Mohd Amir*, Mohd Zamri Yusoff, Saiful Hasmady Abu Hassan

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-15, 2022, DOI:10.5098/hmt.18.27

    Abstract Nanofluid film on a horizontal tube is investigated numerically on the circular and multi-faceted cylinder. The fluid flow characteristics, including film thickness, shear stress, and thermal performance, are observed and analyzed. Fluid film on the circular surface is typical in many engineering applications, but the study of nanofluid film on non-circular surface is deficient in literature. The study provides a numerical model of a multi-faceted cylinder to simulate the nanofluid film on the non-circular surfaces using a volume of fluid (VOF) method. The ratio of Brownian motion to thermophoretic diffusion, NBT developed along the film thickness More >

  • Open Access

    ARTICLE

    Flow and Melting Thermal Transfer Enhancement Analysis of Alumina, Titanium Oxide-Based Maxwell Nanofluid Flow Inside Double Rotating Disks with Finite-Element Simulation

    Liangliang Chen1, Madeeha Tahir2,*, Sumeira Yasmin3, Taseer Muhammad4, Muhammad Imran5,*, Fenghua Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1771-1788, 2022, DOI:10.32604/cmes.2022.017539 - 30 December 2021

    Abstract The energy produced by the melting stretching disks surface has a wide range of commercial applications, including semi-conductor material preparation, magma solidification, permafrost melting, and frozen land refreezing, among others. In view of this, in the current communication we analyzed magnetohydrodynamic flow of Maxwell nanofluid between two parallel rotating disks. Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices. Furthermore, the distinct tiny-sized particles and in the Maxwell water-based fluid for enhancing the heat transfer rate are analyzed. The heat equation is developed… More >

Displaying 1-10 on page 1 of 20. Per Page