Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (114)
  • Open Access

    ARTICLE

    Mural Anomaly Region Detection Algorithm Based on Hyperspectral Multiscale Residual Attention Network

    Bolin Guo1,2, Shi Qiu1,*, Pengchang Zhang1, Xingjia Tang3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1809-1833, 2024, DOI:10.32604/cmc.2024.056706 - 15 October 2024

    Abstract Mural paintings hold significant historical information and possess substantial artistic and cultural value. However, murals are inevitably damaged by natural environmental factors such as wind and sunlight, as well as by human activities. For this reason, the study of damaged areas is crucial for mural restoration. These damaged regions differ significantly from undamaged areas and can be considered abnormal targets. Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections. Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods. Thus, this study employs hyperspectral imaging… More >

  • Open Access

    ARTICLE

    Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series

    Byeongcheon Lee1, Sangmin Kim1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho1,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1275-1300, 2024, DOI:10.32604/cmc.2024.054826 - 15 October 2024

    Abstract In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets? This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) to More >

  • Open Access

    ARTICLE

    PUNet: A Semi-Supervised Anomaly Detection Model for Network Anomaly Detection Based on Positive Unlabeled Data

    Gang Long, Zhaoxin Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 327-343, 2024, DOI:10.32604/cmc.2024.054558 - 15 October 2024

    Abstract Network anomaly detection plays a vital role in safeguarding network security. However, the existing network anomaly detection task is typically based on the one-class zero-positive scenario. This approach is susceptible to overfitting during the training process due to discrepancies in data distribution between the training set and the test set. This phenomenon is known as prediction drift. Additionally, the rarity of anomaly data, often masked by normal data, further complicates network anomaly detection. To address these challenges, we propose the PUNet network, which ingeniously combines the strengths of traditional machine learning and deep learning techniques… More >

  • Open Access

    REVIEW

    Enhancing Internet of Things Intrusion Detection Using Artificial Intelligence

    Shachar Bar1, P. W. C. Prasad2, Md Shohel Sayeed3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1-23, 2024, DOI:10.32604/cmc.2024.053861 - 15 October 2024

    Abstract Escalating cyber security threats and the increased use of Internet of Things (IoT) devices require utilisation of the latest technologies available to supply adequate protection. The aim of Intrusion Detection Systems (IDS) is to prevent malicious attacks that corrupt operations and interrupt data flow, which might have significant impact on critical industries and infrastructure. This research examines existing IDS, based on Artificial Intelligence (AI) for IoT devices, methods, and techniques. The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy, precision, recall and F1-score; this research also… More >

  • Open Access

    ARTICLE

    Anomaly Detection Using Data Rate of Change on Medical Data

    Kwang-Cheol Rim1, Young-Min Yoon2, Sung-Uk Kim3, Jeong-In Kim4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3903-3916, 2024, DOI:10.32604/cmc.2024.054620 - 12 September 2024

    Abstract The identification and mitigation of anomaly data, characterized by deviations from normal patterns or singularities, stand as critical endeavors in modern technological landscapes, spanning domains such as Non-Fungible Tokens (NFTs), cyber-security, and the burgeoning metaverse. This paper presents a novel proposal aimed at refining anomaly detection methodologies, with a particular focus on continuous data streams. The essence of the proposed approach lies in analyzing the rate of change within such data streams, leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy. Through empirical evaluation, our method demonstrates a marked improvement over existing More >

  • Open Access

    ARTICLE

    Enhancing Log Anomaly Detection with Semantic Embedding and Integrated Neural Network Innovations

    Zhanyang Xu*, Zhe Wang, Jian Xu, Hongyan Shi, Hong Zhao

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3991-4015, 2024, DOI:10.32604/cmc.2024.051620 - 12 September 2024

    Abstract System logs, serving as a pivotal data source for performance monitoring and anomaly detection, play an indispensable role in assuring service stability and reliability. Despite this, the majority of existing log-based anomaly detection methodologies predominantly depend on the sequence or quantity attributes of logs, utilizing solely a single Recurrent Neural Network (RNN) and its variant sequence models for detection. These approaches have not thoroughly exploited the semantic information embedded in logs, exhibit limited adaptability to novel logs, and a single model struggles to fully unearth the potential features within the log sequence. Addressing these challenges,… More >

  • Open Access

    ARTICLE

    Anomaly Detection in Imbalanced Encrypted Traffic with Few Packet Metadata-Based Feature Extraction

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 585-607, 2024, DOI:10.32604/cmes.2024.051221 - 20 August 2024

    Abstract In the IoT (Internet of Things) domain, the increased use of encryption protocols such as SSL/TLS, VPN (Virtual Private Network), and Tor has led to a rise in attacks leveraging encrypted traffic. While research on anomaly detection using AI (Artificial Intelligence) is actively progressing, the encrypted nature of the data poses challenges for labeling, resulting in data imbalance and biased feature extraction toward specific nodes. This study proposes a reconstruction error-based anomaly detection method using an autoencoder (AE) that utilizes packet metadata excluding specific node information. The proposed method omits biased packet metadata such as… More >

  • Open Access

    ARTICLE

    Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things

    Mengmeng Zhao1,2,3, Haipeng Peng1,2,*, Lixiang Li1,2, Yeqing Ren1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2815-2837, 2024, DOI:10.32604/cmc.2024.053765 - 15 August 2024

    Abstract In the Industrial Internet of Things (IIoT), sensors generate time series data to reflect the working state. When the systems are attacked, timely identification of outliers in time series is critical to ensure security. Although many anomaly detection methods have been proposed, the temporal correlation of the time series over the same sensor and the state (spatial) correlation between different sensors are rarely considered simultaneously in these methods. Owing to the superior capability of Transformer in learning time series features. This paper proposes a time series anomaly detection method based on a spatial-temporal network and… More >

  • Open Access

    ARTICLE

    Federated Network Intelligence Orchestration for Scalable and Automated FL-Based Anomaly Detection in B5G Networks

    Pablo Fernández Saura1,*, José M. Bernabé Murcia1, Emilio García de la Calera Molina1, Alejandro Molina Zarca2, Jorge Bernal Bernabé1, Antonio F. Skarmeta Gómez1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 163-193, 2024, DOI:10.32604/cmc.2024.051307 - 18 July 2024

    Abstract The management of network intelligence in Beyond 5G (B5G) networks encompasses the complex challenges of scalability, dynamicity, interoperability, privacy, and security. These are essential steps towards achieving the realization of truly ubiquitous Artificial Intelligence (AI)-based analytics, empowering seamless integration across the entire Continuum (Edge, Fog, Core, Cloud). This paper introduces a Federated Network Intelligence Orchestration approach aimed at scalable and automated Federated Learning (FL)-based anomaly detection in B5G networks. By leveraging a horizontal Federated learning approach based on the FedAvg aggregation algorithm, which employs a deep autoencoder model trained on non-anomalous traffic samples to recognize… More >

  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147 - 18 July 2024

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

Displaying 1-10 on page 1 of 114. Per Page