Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Anomaly Detection Algorithm of Power System Based on Graph Structure and Anomaly Attention

    Yifan Gao*, Jieming Zhang, Zhanchen Chen, Xianchao Chen

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 493-507, 2024, DOI:10.32604/cmc.2024.048615

    Abstract In this paper, we propose a novel anomaly detection method for data centers based on a combination of graph structure and abnormal attention mechanism. The method leverages the sensor monitoring data from target power substations to construct multidimensional time series. These time series are subsequently transformed into graph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matrices and additional weights associated with the graph structure, an aggregation matrix is derived. The aggregation matrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure features. Moreover, both the multidimensional time series segments and… More >

  • Open Access

    ARTICLE

    Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs

    Kai Wei1, Song Yu2, Qingxian Pan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 607-622, 2024, DOI:10.32604/cmc.2024.048240

    Abstract Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation. While traditional methods for task allocation can help reduce costs and improve efficiency, they may encounter challenges when dealing with abnormal data flow nodes, leading to decreased allocation accuracy and efficiency. To address these issues, this study proposes a novel two-part invalid detection task allocation framework. In the first step, an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data. Compared to the baseline method, the model achieves an approximately 4% increase in the F1 value on the public dataset. In… More >

  • Open Access

    ARTICLE

    A Security Trade-Off Scheme of Anomaly Detection System in IoT to Defend against Data-Tampering Attacks

    Bing Liu1, Zhe Zhang1, Shengrong Hu2, Song Sun3,*, Dapeng Liu4, Zhenyu Qiu5

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4049-4069, 2024, DOI:10.32604/cmc.2024.048099

    Abstract Internet of Things (IoT) is vulnerable to data-tampering (DT) attacks. Due to resource limitations, many anomaly detection systems (ADSs) for IoT have high false positive rates when detecting DT attacks. This leads to the misreporting of normal data, which will impact the normal operation of IoT. To mitigate the impact caused by the high false positive rate of ADS, this paper proposes an ADS management scheme for clustered IoT. First, we model the data transmission and anomaly detection in clustered IoT. Then, the operation strategy of the clustered IoT is formulated as the running probabilities of all ADSs deployed on… More >

  • Open Access

    ARTICLE

    Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection

    Rui Wang1, Yao Zhou3,*, Guangchun Luo1, Peng Chen2, Dezhong Peng3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3011-3027, 2024, DOI:10.32604/cmes.2023.047065

    Abstract Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data. Due to the challenges associated with annotating anomaly events, time series reconstruction has become a prevalent approach for unsupervised anomaly detection. However, effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series. In this paper, we propose a cross-dimension attentive feature fusion network for time series anomaly detection, referred to as CAFFN. Specifically, a series and feature mixing block is introduced to learn representations in 1D space. Additionally, a… More >

  • Open Access

    ARTICLE

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

    Lanyao Zhang1, Shichao Kan2, Yigang Cen3, Xiaoling Chen1, Linna Zhang1,*, Yansen Huang4,5

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1631-1648, 2024, DOI:10.32604/cmc.2024.046924

    Abstract Unsupervised methods based on density representation have shown their abilities in anomaly detection, but detection performance still needs to be improved. Specifically, approaches using normalizing flows can accurately evaluate sample distributions, mapping normal features to the normal distribution and anomalous features outside it. Consequently, this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network (NF-BMR). It utilizes pre-trained Convolutional Neural Networks (CNN) and normalizing flows to construct discriminative source and target domain feature spaces. Additionally, to better learn feature information in both domain spaces, we propose the Bidirectional Mapping Residual Network (BMR), which maps sample features to these two spaces… More > Graphic Abstract

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work. AI2AI employs AI techniques to… More >

  • Open Access

    ARTICLE

    Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel

    Qing Ai1,2, Hao Tian2,3,*, Hui Wang1,*, Qing Lang1, Xingchun Huang1, Xinghong Jiang4, Qiang Jing5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1797-1827, 2024, DOI:10.32604/cmes.2023.045251

    Abstract Structural Health Monitoring (SHM) systems have become a crucial tool for the operational management of long tunnels. For immersed tunnels exposed to both traffic loads and the effects of the marine environment, efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge. This study proposed a model-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel. Firstly, a dynamic predictive model-based anomaly detection method is proposed, which utilizes a rolling time window for modeling to achieve dynamic prediction. Leveraging the assumption… More >

  • Open Access

    ARTICLE

    Letter Recognition Reinvented: A Dual Approach with MLP Neural Network and Anomaly Detection

    Nesreen M. Alharbi*, Ahmed Hamza Osman, Arwa A. Mashat, Hasan J. Alyamani

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 175-198, 2024, DOI:10.32604/csse.2023.041044

    Abstract Recent years have witnessed significant advancements in the field of character recognition, thanks to the revolutionary introduction of machine learning techniques. Among various types of character recognition, offline Handwritten Character Recognition (HCR) is comparatively more challenging as it lacks temporal information, such as stroke count and direction, ink pressure, and unexpected handwriting variability. These issues contribute to a poor level of precision, which calls for the adoption of anomaly detection techniques to enhance Optical Character Recognition (OCR) schemes. Previous studies have not researched unsupervised anomaly detection using MLP for handwriting recognition. Therefore, this study proposes a novel approach for enhanced… More >

  • Open Access

    ARTICLE

    Functional Pattern-Related Anomaly Detection Approach Collaborating Binary Segmentation with Finite State Machine

    Ming Wan1, Minglei Hao1, Jiawei Li1, Jiangyuan Yao2,*, Yan Song3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3573-3592, 2023, DOI:10.32604/cmc.2023.044857

    Abstract The process control-oriented threat, which can exploit OT (Operational Technology) vulnerabilities to forcibly insert abnormal control commands or status information, has become one of the most devastating cyber attacks in industrial automation control. To effectively detect this threat, this paper proposes one functional pattern-related anomaly detection approach, which skillfully collaborates the BinSeg (Binary Segmentation) algorithm with FSM (Finite State Machine) to identify anomalies between measuring data and control data. By detecting the change points of measuring data, the BinSeg algorithm is introduced to generate some initial sequence segments, which can be further classified and merged into different functional patterns due… More >

  • Open Access

    ARTICLE

    A Memory-Guided Anomaly Detection Model with Contrastive Learning for Multivariate Time Series

    Wei Zhang1, Ping He2,*, Ting Li2, Fan Yang1, Ying Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1893-1910, 2023, DOI:10.32604/cmc.2023.044253

    Abstract Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification. These limitations can result in the misjudgment of models, leading to a degradation in overall detection performance. This paper proposes a novel transformer-like anomaly detection model adopting a contrastive learning module and a memory block (CLME) to overcome the above limitations. The contrastive learning module tailored for time series data can learn the contextual relationships to generate temporal fine-grained representations. The memory block can record normal patterns of these representations through the utilization of… More >

Displaying 1-10 on page 1 of 100. Per Page