Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    Cyber-Integrated Predictive Framework for Gynecological Cancer Detection: Leveraging Machine Learning on Numerical Data amidst Cyber-Physical Attack Resilience

    Muhammad Izhar1,*, Khadija Parwez2, Saman Iftikhar3, Adeel Ahmad4, Shaikhan Bawazeer3, Saima Abdullah4

    Journal on Artificial Intelligence, Vol.7, pp. 55-83, 2025, DOI:10.32604/jai.2025.062479 - 25 April 2025

    Abstract The growing intersection of gynecological cancer diagnosis and cybersecurity vulnerabilities in healthcare necessitates integrated solutions that address both diagnostic accuracy and data protection. With increasing reliance on IoT-enabled medical devices, digital twins, and interconnected healthcare systems, the risk of cyber-physical attacks has escalated significantly. Traditional approaches to machine learning (ML)–based diagnosis often lack real-time threat adaptability and privacy preservation, while cybersecurity frameworks fall short in maintaining clinical relevance. This study introduces HealthSecureNet, a novel Cyber-Integrated Predictive Framework designed to detect gynecological cancer and mitigate cybersecurity threats in real time simultaneously. The proposed model employs a… More >

  • Open Access

    ARTICLE

    PNSS: Unknown Face Presentation Attack Detection with Pseudo Negative Sample Synthesis

    Hongyang Wang1,2, Yichen Shi3, Jun Feng1,2,*, Zitong Yu4, Zhuofu Tao5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3097-3112, 2025, DOI:10.32604/cmc.2025.061019 - 16 April 2025

    Abstract Face Presentation Attack Detection (fPAD) plays a vital role in securing face recognition systems against various presentation attacks. While supervised learning-based methods demonstrate effectiveness, they are prone to overfitting to known attack types and struggle to generalize to novel attack scenarios. Recent studies have explored formulating fPAD as an anomaly detection problem or one-class classification task, enabling the training of generalized models for unknown attack detection. However, conventional anomaly detection approaches encounter difficulties in precisely delineating the boundary between bonafide samples and unknown attacks. To address this challenge, we propose a novel framework focusing on… More >

  • Open Access

    ARTICLE

    LogDA: Dual Attention-Based Log Anomaly Detection Addressing Data Imbalance

    Chexiaole Zhang, Haiyan Fu*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1291-1306, 2025, DOI:10.32604/cmc.2025.060740 - 26 March 2025

    Abstract As computer data grows exponentially, detecting anomalies within system logs has become increasingly important. Current research on log anomaly detection largely depends on log templates derived from log parsing. Word embedding is utilized to extract information from these templates. However, this method neglects a portion of the content within the logs and confronts the challenge of data imbalance among various log template types after parsing. Currently, specialized research on data imbalance across log template categories remains scarce. A dual-attention-based log anomaly detection model (LogDA), which leveraged data imbalance, was proposed to address these issues in More >

  • Open Access

    ARTICLE

    Hybrid Memory-Enhanced Autoencoder with Adversarial Training for Anomaly Detection in Virtual Power Plants

    Yuqiao Liu1, Chen Pan1, YeonJae Oh2,*, Chang Gyoon Lim1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4593-4629, 2025, DOI:10.32604/cmc.2025.061196 - 06 March 2025

    Abstract Virtual Power Plants (VPPs) are integral to modern energy systems, providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data. Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations. We introduce the Memory-Enhanced Autoencoder with Adversarial Training (MemAAE) model to overcome these limitations, designed explicitly for robust anomaly detection in VPP environments. The MemAAE model integrates three principal components: an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors, an adversarial training module that… More >

  • Open Access

    ARTICLE

    Cloud-Based Deep Learning for Real-Time URL Anomaly Detection: LSTM/GRU and CNN/LSTM Models

    Ayman Noor*

    Computer Systems Science and Engineering, Vol.49, pp. 259-286, 2025, DOI:10.32604/csse.2025.060387 - 21 February 2025

    Abstract Precisely forecasting the performance of Deep Learning (DL) models, particularly in critical areas such as Uniform Resource Locator (URL)-based threat detection, aids in improving systems developed for difficult tasks. In cybersecurity, recognizing harmful URLs is vital to lowering risks associated with phishing, malware, and other online-based attacks. Since it directly affects the model’s capacity to differentiate between benign and harmful URLs, finding the optimum mix of hyperparameters in DL models is a significant difficulty. Two commonly used architectures for sequential and spatial data processing, Long Short-Term Memory (LSTM)/Gated Recurrent Unit (GRU) and Convolutional Neural Network… More >

  • Open Access

    ARTICLE

    Multi-Head Attention Enhanced Parallel Dilated Convolution and Residual Learning for Network Traffic Anomaly Detection

    Guorong Qi1, Jian Mao1,*, Kai Huang1, Zhengxian You2, Jinliang Lin2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2159-2176, 2025, DOI:10.32604/cmc.2024.058396 - 17 February 2025

    Abstract Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features; Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection… More >

  • Open Access

    ARTICLE

    Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning

    Shijie Tang1,2, Yong Ding1,3,4,*, Huiyong Wang5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1129-1150, 2025, DOI:10.32604/cmc.2024.059143 - 03 January 2025

    Abstract As more and more devices in Cyber-Physical Systems (CPS) are connected to the Internet, physical components such as programmable logic controller (PLC), sensors, and actuators are facing greater risks of network attacks, and fast and accurate attack detection techniques are crucial. The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series. To address this issue, we propose an anomaly detection method based on distributed deep learning. Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the More >

  • Open Access

    ARTICLE

    Anomaly Detection of Controllable Electric Vehicles through Node Equation against Aggregation Attack

    Jing Guo*, Ziying Wang, Yajuan Guo, Haitao Jiang

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 427-442, 2025, DOI:10.32604/cmc.2024.057045 - 03 January 2025

    Abstract The rapid proliferation of electric vehicle (EV) charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system. This study presents an innovative anomaly detection framework for EV charging stations, addressing the unique challenges posed by third-party aggregation platforms. Our approach integrates node equations-based on the parameter identification with a novel deep learning model, xDeepCIN, to detect abnormal data reporting indicative of aggregation attacks. We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation. The xDeepCIN model, incorporating a Compressed Interaction Network, has the ability… More >

  • Open Access

    ARTICLE

    A Scalable and Generalized Deep Ensemble Model for Road Anomaly Detection in Surveillance Videos

    Sarfaraz Natha1,2,*, Fareed A. Jokhio1, Mehwish Laghari1, Mohammad Siraj3,*, Saif A. Alsaif3, Usman Ashraf4, Asghar Ali5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3707-3729, 2024, DOI:10.32604/cmc.2024.057684 - 19 December 2024

    Abstract Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure. Close Circuits Television (CCTV) Cameras are used to surveillance and monitor the normal and anomalous incidents. Real-world anomaly detection is a significant challenge due to its complex and diverse nature. It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems, and the need for automated techniques has been raised to enhance detection accuracy. This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack… More >

  • Open Access

    ARTICLE

    AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics

    Juhwan Kim, Baehoon Son, Jihyeon Yu, Joobeom Yun*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3371-3393, 2024, DOI:10.32604/cmc.2024.057234 - 18 November 2024

    Abstract Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence (AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were… More >

Displaying 1-10 on page 1 of 126. Per Page