Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (308)
  • Open Access

    ARTICLE

    Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition

    Fatma Harby1, Mansor Alohali2, Adel Thaljaoui2,3,*, Amira Samy Talaat4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2689-2719, 2024, DOI:10.32604/cmc.2024.046623

    Abstract Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the emotional states of speakers holds significant importance in a range of real-time applications, including but not limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients (MFCCs) due to their ability to capture… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work.… More >

  • Open Access

    ARTICLE

    An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials

    Abidhan Bardhan1,*, Raushan Kumar Singh2, Mohammed Alatiyyah3, Sulaiman Abdullah Alateyah4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1521-1555, 2024, DOI:10.32604/cmes.2023.044467

    Abstract This research proposes a highly effective soft computing paradigm for estimating the compressive strength (CS) of metakaolin-contained cemented materials. The proposed approach is a combination of an enhanced grey wolf optimizer (EGWO) and an extreme learning machine (ELM). EGWO is an augmented form of the classic grey wolf optimizer (GWO). Compared to standard GWO, EGWO has a better hunting mechanism and produces an optimal performance. The EGWO was used to optimize the ELM structure and a hybrid model, ELM-EGWO, was built. To train and validate the proposed ELM-EGWO model, a sum of 361 experimental results… More >

  • Open Access

    REVIEW

    AI-Based UAV Swarms for Monitoring and Disease Identification of Brassica Plants Using Machine Learning: A Review

    Zain Anwar Ali1,2,*, Dingnan Deng1, Muhammad Kashif Shaikh3, Raza Hasan4, Muhammad Aamir Khan2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 1-34, 2024, DOI:10.32604/csse.2023.041866

    Abstract Technological advances in unmanned aerial vehicles (UAVs) pursued by artificial intelligence (AI) are improving remote sensing applications in smart agriculture. These are valuable tools for monitoring and disease identification of plants as they can collect data with no damage and effects on plants. However, their limited carrying and battery capacities restrict their performance in larger areas. Therefore, using multiple UAVs, especially in the form of a swarm is more significant for monitoring larger areas such as crop fields and forests. The diversity of research studies necessitates a literature review for more progress and contribution in… More >

  • Open Access

    ARTICLE

    Efficient DP-FL: Efficient Differential Privacy Federated Learning Based on Early Stopping Mechanism

    Sanxiu Jiao1, Lecai Cai2,*, Jintao Meng3, Yue Zhao3, Kui Cheng2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 247-265, 2024, DOI:10.32604/csse.2023.040194

    Abstract Federated learning is a distributed machine learning framework that solves data security and data island problems faced by artificial intelligence. However, federated learning frameworks are not always secure, and attackers can attack customer privacy information by analyzing parameters in the training process of federated learning models. To solve the problems of data security and availability during federated learning training, this paper proposes an Efficient Differential Privacy Federated Learning Algorithm based on early stopping mechanism (Efficient DP-FL). This method inherits the advantages of differential privacy and federated learning and improves the performance of model training while More >

  • Open Access

    ARTICLE

    Integration of Digital Twins and Artificial Intelligence for Classifying Cardiac Ischemia

    Mohamed Ammar1,*, Hamed Al-Raweshidy2,*

    Journal on Artificial Intelligence, Vol.5, pp. 195-218, 2023, DOI:10.32604/jai.2023.045199

    Abstract Despite advances in intelligent medical care, difficulties remain. Due to its complicated governance, designing, planning, improving, and managing the cardiac system remains difficult. Oversight, including intelligent monitoring, feedback systems, and management practises, is unsuccessful. Current platforms cannot deliver lifelong personal health management services. Insufficient accuracy in patient crisis warning programmes. No frequent, direct interaction between healthcare workers and patients is visible. Physical medical systems and intelligent information systems are not integrated. This study introduces the Advanced Cardiac Twin (ACT) model integrated with Artificial Neural Network (ANN) to handle real-time monitoring, decision-making, and crisis prediction. THINGSPEAK… More >

  • Open Access

    ARTICLE

    Enhancing Breast Cancer Diagnosis with Channel-Wise Attention Mechanisms in Deep Learning

    Muhammad Mumtaz Ali, Faiqa Maqsood, Shiqi Liu, Weiyan Hou, Liying Zhang, Zhenfei Wang*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2699-2714, 2023, DOI:10.32604/cmc.2023.045310

    Abstract Breast cancer, particularly Invasive Ductal Carcinoma (IDC), is a primary global health concern predominantly affecting women. Early and precise diagnosis is crucial for effective treatment planning. Several AI-based techniques for IDC-level classification have been proposed in recent years. Processing speed, memory size, and accuracy can still be improved for better performance. Our study presents ECAM, an Enhanced Channel-Wise Attention Mechanism, using deep learning to analyze histopathological images of Breast Invasive Ductal Carcinoma (BIDC). The main objectives of our study are to enhance computational efficiency using a Separable CNN architecture, improve data representation through hierarchical feature… More >

  • Open Access

    ARTICLE

    Multiclass Classification for Cyber Threats Detection on Twitter

    Adnan Hussein1, Abdulwahab Ali Almazroi2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3853-3866, 2023, DOI:10.32604/cmc.2023.040856

    Abstract The advances in technology increase the number of internet systems usage. As a result, cybersecurity issues have become more common. Cyber threats are one of the main problems in the area of cybersecurity. However, detecting cybersecurity threats is not a trivial task and thus is the center of focus for many researchers due to its importance. This study aims to analyze Twitter data to detect cyber threats using a multiclass classification approach. The data is passed through different tasks to prepare it for the analysis. Term Frequency and Inverse Document Frequency (TFIDF) features are extracted… More >

  • Open Access

    ARTICLE

    Phishing Website URL’s Detection Using NLP and Machine Learning Techniques

    Dinesh Kalla1,*, Sivaraju Kuraku2

    Journal on Artificial Intelligence, Vol.5, pp. 145-162, 2023, DOI:10.32604/jai.2023.043366

    Abstract Phishing websites present a severe cybersecurity risk since they can lead to financial losses, data breaches, and user privacy violations. This study uses machine learning approaches to solve the problem of phishing website detection. Using artificial intelligence, the project aims to provide efficient techniques for locating and thwarting these dangerous websites. The study goals were attained by performing a thorough literature analysis to investigate several models and methods often used in phishing website identification. Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, Support Vector Classifiers, Linear Support Vector Classifiers, and Naive Bayes were all used More >

  • Open Access

    ARTICLE

    Assessing the Efficacy of Improved Learning in Hourly Global Irradiance Prediction

    Abdennasser Dahmani1, Yamina Ammi2, Nadjem Bailek3,4,*, Alban Kuriqi5,6, Nadhir Al-Ansari7,*, Salah Hanini2, Ilhami Colak8, Laith Abualigah9,10,11,12,13,14, El-Sayed M. El-kenawy15

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2579-2594, 2023, DOI:10.32604/cmc.2023.040625

    Abstract Increasing global energy consumption has become an urgent problem as natural energy sources such as oil, gas, and uranium are rapidly running out. Research into renewable energy sources such as solar energy is being pursued to counter this. Solar energy is one of the most promising renewable energy sources, as it has the potential to meet the world’s energy needs indefinitely. This study aims to develop and evaluate artificial intelligence (AI) models for predicting hourly global irradiation. The hyperparameters were optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton training algorithm and STATISTICA software. Data from two stations… More >

Displaying 21-30 on page 3 of 308. Per Page