Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Soft Robotic Glove Controlling Using Brainwave Detection for Continuous Rehabilitation at Home

    Talit Jumphoo1, Monthippa Uthansakul1, Pumin Duangmanee1, Naeem Khan2, Peerapong Uthansakul1,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 961-976, 2021, DOI:10.32604/cmc.2020.012433

    Abstract The patients with brain diseases (e.g., Stroke and Amyotrophic Lateral Sclerosis (ALS)) are often affected by the injury of motor cortex, which causes a muscular weakness. For this reason, they require rehabilitation with continuous physiotherapy as these diseases can be eased within the initial stages of the symptoms. So far, the popular control system for robot-assisted rehabilitation devices is only of two types which consist of passive and active devices. However, if there is a control system that can directly detect the motor functions, it will induce neuroplasticity to facilitate early motor recovery. In this paper, the control system, which… More >

  • Open Access

    ARTICLE

    Applying ANN, ANFIS and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2

    Amin Bemani1, Alireza Baghban2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5, 6, 7, Peter Csiba7, Annamaria R. Varkonyi-Koczy5, 7

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1175-1204, 2020, DOI:10.32604/cmc.2020.07723

    Abstract In the present work, a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide. Four different machine learning algorithms of radial basis function, multi-layer perceptron (MLP), artificial neural networks (ANN), least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen number, carbon number, molecular weight, and the dissociation constant of acid. To evaluate the proposed models, different graphical and statistical analyses, along with novel sensitivity analysis, are carried out.… More >

Displaying 1-10 on page 1 of 2. Per Page