Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    Probe Attack Detection Using an Improved Intrusion Detection System

    Abdulaziz Almazyad, Laila Halman, Alaa Alsaeed*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4769-4784, 2023, DOI:10.32604/cmc.2023.033382 - 28 December 2022

    Abstract The novel Software Defined Networking (SDN) architecture potentially resolves specific challenges arising from rapid internet growth of and the static nature of conventional networks to manage organizational business requirements with distinctive features. Nevertheless, such benefits lead to a more adverse environment entailing network breakdown, systems paralysis, and online banking fraudulence and robbery. As one of the most common and dangerous threats in SDN, probe attack occurs when the attacker scans SDN devices to collect the necessary knowledge on system susceptibilities, which is then manipulated to undermine the entire system. Precision, high performance, and real-time systems… More >

  • Open Access

    ARTICLE

    EsECC_SDN: Attack Detection and Classification Model for MANET

    Veera Ankalu Vuyyuru1, Youseef Alotaibi2, Neenavath Veeraiah3,*, Saleh Alghamdi4, Korimilli Sirisha5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6665-6688, 2023, DOI:10.32604/cmc.2023.032140 - 28 December 2022

    Abstract Mobile Ad Hoc Networks (MANET) is the framework for social networking with a realistic framework. In the MANET environment, based on the query, information is transmitted between the sender and receiver. In the MANET network, the nodes within the communication range are involved in data transmission. Even the nodes that lie outside of the communication range are involved in the transmission of relay messages. However, due to the openness and frequent mobility of nodes, they are subjected to the vast range of security threats in MANET. Hence, it is necessary to develop an appropriate security… More >

  • Open Access

    ARTICLE

    Resource Exhaustion Attack Detection Scheme for WLAN Using Artificial Neural Network

    Abdallah Elhigazi Abdallah1, Mosab Hamdan2, Shukor Abd Razak3, Fuad A. Ghalib3, Muzaffar Hamzah2,*, Suleman Khan4, Siddiq Ahmed Babikir Ali5, Mutaz H. H. Khairi1, Sayeed Salih6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5607-5623, 2023, DOI:10.32604/cmc.2023.031047 - 28 December 2022

    Abstract IEEE 802.11 Wi-Fi networks are prone to many denial of service (DoS) attacks due to vulnerabilities at the media access control (MAC) layer of the 802.11 protocol. Due to the data transmission nature of the wireless local area network (WLAN) through radio waves, its communication is exposed to the possibility of being attacked by illegitimate users. Moreover, the security design of the wireless structure is vulnerable to versatile attacks. For example, the attacker can imitate genuine features, rendering classification-based methods inaccurate in differentiating between real and false messages. Although many security standards have been proposed… More >

  • Open Access

    ARTICLE

    A Novel Framework for DDoS Attacks Detection Using Hybrid LSTM Techniques

    Anitha Thangasamy*, Bose Sundan, Logeswari Govindaraj

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2553-2567, 2023, DOI:10.32604/csse.2023.032078 - 21 December 2022

    Abstract The recent development of cloud computing offers various services on demand for organization and individual users, such as storage, shared computing space, networking, etc. Although Cloud Computing provides various advantages for users, it remains vulnerable to many types of attacks that attract cyber criminals. Distributed Denial of Service (DDoS) is the most common type of attack on cloud computing. Consequently, Cloud computing professionals and security experts have focused on the growth of preventive processes towards DDoS attacks. Since DDoS attacks have become increasingly widespread, it becomes difficult for some DDoS attack methods based on individual… More >

  • Open Access

    ARTICLE

    Hybrid of Distributed Cumulative Histograms and Classification Model for Attack Detection

    Mostafa Nassar1, Anas M. Ali1,2, Walid El-Shafai1,3, Adel Saleeb1, Fathi E. Abd El-Samie1, Naglaa F. Soliman4, Hussah Nasser AlEisa5,*, Hossam Eldin H. Ahmed1

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2235-2247, 2023, DOI:10.32604/csse.2023.032156 - 03 November 2022

    Abstract Traditional security systems are exposed to many various attacks, which represents a major challenge for the spread of the Internet in the future. Innovative techniques have been suggested for detecting attacks using machine learning and deep learning. The significant advantage of deep learning is that it is highly efficient, but it needs a large training time with a lot of data. Therefore, in this paper, we present a new feature reduction strategy based on Distributed Cumulative Histograms (DCH) to distinguish between dataset features to locate the most effective features. Cumulative histograms assess the dataset instance More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics Feature Selection with Stacked Deep Learning-Enabled Cyber-Attack Detection Model

    Mashael M Asiri1, Heba G. Mohamed2, Mohamed K Nour3, Mesfer Al Duhayyim4,*, Amira Sayed A. Aziz5, Abdelwahed Motwakel6, Abu Sarwar Zamani6, Mohamed I. Eldesouki7

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1679-1694, 2023, DOI:10.32604/csse.2023.031063 - 03 November 2022

    Abstract Due to exponential increase in smart resource limited devices and high speed communication technologies, Internet of Things (IoT) have received significant attention in different application areas. However, IoT environment is highly susceptible to cyber-attacks because of memory, processing, and communication restrictions. Since traditional models are not adequate for accomplishing security in the IoT environment, the recent developments of deep learning (DL) models find beneficial. This study introduces novel hybrid metaheuristics feature selection with stacked deep learning enabled cyber-attack detection (HMFS-SDLCAD) model. The major intention of the HMFS-SDLCAD model is to recognize the occurrence of cyberattacks… More >

  • Open Access

    ARTICLE

    DoS Attack Detection Based on Deep Factorization Machine in SDN

    Jing Wang1, Xiangyu Lei1, Qisheng Jiang1, Osama Alfarraj2, Amr Tolba2, Gwang-jun Kim3,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1727-1742, 2023, DOI:10.32604/csse.2023.030183 - 03 November 2022

    Abstract Software-Defined Network (SDN) decouples the control plane of network devices from the data plane. While alleviating the problems presented in traditional network architectures, it also brings potential security risks, particularly network Denial-of-Service (DoS) attacks. While many research efforts have been devoted to identifying new features for DoS attack detection, detection methods are less accurate in detecting DoS attacks against client hosts due to the high stealth of such attacks. To solve this problem, a new method of DoS attack detection based on Deep Factorization Machine (DeepFM) is proposed in SDN. Firstly, we select the Growth… More >

  • Open Access

    ARTICLE

    Genetic-based Fuzzy IDS for Feature Set Reduction and Worm Hole Attack Detection

    M. Reji1,*, Christeena Joseph2, K. Thaiyalnayaki2, R. Lathamanju2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1265-1278, 2023, DOI:10.32604/csse.2023.026776 - 03 November 2022

    Abstract The wireless ad-hoc networks are decentralized networks with a dynamic topology that allows for end-to-end communications via multi-hop routing operations with several nodes collaborating themselves, when the destination and source nodes are not in range of coverage. Because of its wireless type, it has lot of security concerns than an infrastructure networks. Wormhole attacks are one of the most serious security vulnerabilities in the network layers. It is simple to launch, even if there is no prior network experience. Signatures are the sole thing that preventive measures rely on. Intrusion detection systems (IDS) and other… More >

  • Open Access

    ARTICLE

    Developing a Secure Framework Using Feature Selection and Attack Detection Technique

    Mahima Dahiya*, Nitin Nitin

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4183-4201, 2023, DOI:10.32604/cmc.2023.032430 - 31 October 2022

    Abstract Intrusion detection is critical to guaranteeing the safety of the data in the network. Even though, since Internet commerce has grown at a breakneck pace, network traffic kinds are rising daily, and network behavior characteristics are becoming increasingly complicated, posing significant hurdles to intrusion detection. The challenges in terms of false positives, false negatives, low detection accuracy, high running time, adversarial attacks, uncertain attacks, etc. lead to insecure Intrusion Detection System (IDS). To offset the existing challenge, the work has developed a secure Data Mining Intrusion detection system (DataMIDS) framework using Functional Perturbation (FP) feature… More >

  • Open Access

    ARTICLE

    A Novel Approach for Network Vulnerability Analysis in IIoT

    K. Sudhakar*, S. Senthilkumar

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 263-277, 2023, DOI:10.32604/csse.2023.029680 - 16 August 2022

    Abstract Industrial Internet of Things (IIoT) offers efficient communication among business partners and customers. With an enlargement of IoT tools connected through the internet, the ability of web traffic gets increased. Due to the raise in the size of network traffic, discovery of attacks in IIoT and malicious traffic in the early stages is a very demanding issues. A novel technique called Maximum Posterior Dichotomous Quadratic Discriminant Jaccardized Rocchio Emphasis Boost Classification (MPDQDJREBC) is introduced for accurate attack detection with minimum time consumption in IIoT. The proposed MPDQDJREBC technique includes feature selection and categorization. First, the… More >

Displaying 31-40 on page 4 of 66. Per Page