Muhammad Asif Khan1, Dildar Hussain2, Bhuyan Kaibalya Prasad3, Irfan Ullah4, Inayat Khan5, Jawad Khan6,*, Yeong Hyeon Gu2,*, Pavlos Kefalas7
CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5451-5468, 2025, DOI:10.32604/cmc.2025.069134
- 23 October 2025
Abstract Dialogue State Tracking (DST) is a critical component of task-oriented spoken dialogue systems (SDS), tasked with maintaining an accurate representation of the conversational state by predicting slots and their corresponding values. Recent advances leverage Large Language Models (LLMs) with prompt-based tuning to improve tracking accuracy and efficiency. However, these approaches often incur substantial computational and memory overheads and typically address slot extraction implicitly within prompts, without explicitly modeling the complex dependencies between slots and values. In this work, we propose PUGG, a novel DST framework that constructs schema-driven prompts to fine-tune GPT-2 and utilizes its tokenizer… More >