Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (138)
  • Open Access

    ARTICLE

    3-D Transient Dynamic Crack Analysis by a Novel Time-Domain BEM

    Ch. Zhang2, A. Savaidis3

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 603-618, 2003, DOI:10.3970/cmes.2003.004.603

    Abstract A novel non-hypersingular time-domain traction BEM is presented for three-dimensional (3-D) transient elastodynamic crack analysis. The initial-boundary value problem is formulated as a set of non-hypersingular time-domain traction boundary integral equations (BIEs). To solve the time-domain traction BIEs, a time-stepping scheme based on the convolution quadrature formula of Lubich (1988a,b; 1994) for temporal discretization and a collocation method for spatial discretization is adopted. Numerical examples are given for an unbounded solid with a penny-shaped crack under a tensile and shear impact loading. A comparison of the present time-domain BEM with the conventional one shows that the novel time-domain method is… More >

  • Open Access

    ARTICLE

    A New Application of the Panel Clustering Method for 3D SGBEM

    A. Aimi1, M. Diligenti1, F. Lunardini1, A. Salvadori2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 31-50, 2003, DOI:10.3970/cmes.2003.004.031

    Abstract This paper is devoted to the study of a new application of the Panel Clustering Method [Hackbusch and Sauter (1993); Hackbusch and Nowak (1989)]. By considering a classical 3D Neumann screen problem in its boundary integral formulation discretized with the Galerkin BEM, which requires the evaluation of double integrals with hypersingular kernel, we recall and use some recent results of analytical evaluation of the inner hypersingular integrals. Then we apply the Panel Clustering Method (PCM) for the evaluation of the outer integral. For this approach error estimate is shown. Numerical examples and comparisons with classical PCM technique are presented. More >

  • Open Access

    ARTICLE

    Meshless BEM for Three-dimensional Stokes Flows

    C.C. Tsai1, D.L. Young2, A.H.-D. Cheng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 117-128, 2002, DOI:10.3970/cmes.2002.003.117

    Abstract This paper describes a combination of the dual reciprocity method (DRM) and the method of fundamental solution (MFS) as a meshless BEM (DRM-MFS) to solve three-dimensional Stokes flow problems by the velocity-vorticity formulation, where the DRM is based on the compactly supported, positive definite radial basis functions (CS-PD-RBF). In the velocity-vorticity formulation, both of the diffusion type vorticity equations and the Poisson type velocity equations are solved by DRM-MFS. Here a typical internal cubic cavity flow and an external flow past a sphere are presented. The results are acceptable. Furthermore, this paper provides a preliminary work for applications to the… More >

  • Open Access

    ARTICLE

    Steady Heat Conduction Analysis in Orthotropic Bodies by Triple-reciprocity BEM

    Y. Ochiai

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.4, pp. 435-446, 2001, DOI:10.3970/cmes.2001.002.435

    Abstract The boundary element method (BEM) is useful in solving the steady heat conduction problem of orthotropic bodies without heat generation. However, for cases with arbitrary heat generation, a number of internal cells are necessary. In this paper, it is shown that the problem of steady heat conduction in orthotropic bodies with heat generation can be solved without internal cells by the triple-reciprocity BEM. In this method, the distribution of heat generation is interpolated using integral equations. In order to solve the problem, the values of heat generation at internal points and on the boundary are used. Furthermore, a new interpolation… More >

  • Open Access

    ARTICLE

    SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and Their Growth in Structural Components1

    G.P.Nikishkov2, J.H.Park3, S.N.Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 401-422, 2001, DOI:10.3970/cmes.2001.002.401

    Abstract An efficient and highly accurate, Symmetric Galerkin Boundary Element Method - Finite Element Method - based alternating method, for the analysis of three-dimensional non-planar cracks, and their growth, in structural components of complicated geometries, is proposed. The crack is modeled by the symmetric Galerkin boundary element method, as a distribution of displacement discontinuities, as if in an infinite medium. The finite element method is used to perform the stress analysis for the uncracked body only. The solution for the structural component, containing the crack, is obtained in an iteration procedure, which alternates between FEM solution for the uncracked body, and… More >

  • Open Access

    ARTICLE

    Coupling of BEM/FEM for Time Domain Structural-Acoustic Interaction Problems

    S.T. Lie1, Guoyou Yu, Z. Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.2, pp. 171-182, 2001, DOI:10.3970/cmes.2001.002.171

    Abstract The BEM/FEM coupling procedure is applied to 2-D time domain structural-acoustic interaction problems. The acoustic domain for fluid or air is modeled by BEM scheme that is suitable for both finite and infinite domains, while the structure is modeled by FEM scheme. The input impact, which can be either plane waves or non-plane waves, can either be forces acting directly on the structural-acoustic system or be explosion sources. The far field or near field explosion sources which are difficult to be simulated by finite element modeling, can be simulated exactly by boundary element modeling as internal sources. In order to… More >

  • Open Access

    ARTICLE

    Coupling of Underground Pipelines and Slowly Moving Landslides by BEM Analysis

    A. Mandolini1, V. Minutolo1, E. Ruocco1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 39-48, 2001, DOI:10.3970/cmes.2001.002.039

    Abstract Many sloping areas in the world are affected by slow movements. If they are occupied by settlements or are crossed by roads, pipelines or other infrastructures, a correct evaluation of future displacements is crucial for land management and sometimes for men safety. It is widely recognized that rainfall is the main triggering factor, producing an intermittent and delayed recharge of the groundwater; as a consequence, the displacement rate is cyclic, following a seasonal trend. In Italy this problem is particularly relevant since many exploited sloping areas are affected by slowly moving landslides that interact with man-made works. In present paper… More >

  • Open Access

    ARTICLE

    Three dimensional BEM and FEM stress analysis of the human tibia under pathological conditions

    C.M. Müller-Karger1, C.González2, M.H.Aliabadi3, M.Cerrolaza4

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 1-14, 2001, DOI:10.3970/cmes.2001.002.001

    Abstract In this paper, a three-dimensional Boundary Element model of the proximal tibia of the human knee is described and stresses and displacements in the tibial plateau under static loading are computed. The geometry is generated via three-dimensional reconstruction of Computerized Tomographies and Magnetic Resonance Imaging. Various models of different lengths from the tibia plateau are calculated. The BEM results are compared with a Finite Element model having the same geometry and tibia FE models available in the literature. Also reported are investigations of some pathological situations, including fractures. The results of the comparisons show that BEM is an efficient and… More >

  • Open Access

    ARTICLE

    General Application of Numerical Green's Functions for SIF Computations With Boundary Elements

    S. Guimarães1, J.C.F. Telles2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 131-139, 2000, DOI:10.3970/cmes.2000.001.433

    Abstract The paper discusses further applications of the hyper-singular boundary integral equation to obtain the Green's function solution to general geometry fracture mechanics problems, such as curved multifracture crack simulation, static and transient dynamic in 2-D, 3-D and plate bending problems. This numerical Green's function (NGF) is implemented into alternative boundary element computer programs, as the fundamental solution, to enhance the scope of alternative applications of the NGF procedure.
    The results to some typical linear fracture mechanics problems are presented. More >

  • Open Access

    ARTICLE

    BEM / FEM Comparison Studies for the Inelastic Dynamic Analysis of Thick Plates on Elastic Foundation

    C.P . Providakis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 123-130, 2000, DOI:10.3970/cmes.2000.001.425

    Abstract Boundary and Finite Element methodologies for the determination of the inelastic response of thick plates resting on Winkler-type elastic foundations are compared and critically discussed. For comparison reasons the domain/boundary element and the finite element methodology use isoparametric elements of the same accuracy level. After a discretizaton of the integral equations of motion in both methodologies an efficient step-by-step time integration algorithm is used to solve the resulting matrix equations. Comparison studies are shown for impacted elastoplastic thick plates with smooth boundaries and supported on different Winkler-type foundations. The numerical results reveal that boundary element method appears to be a… More >

Displaying 121-130 on page 13 of 138. Per Page